GO-SUSI Operator’s Manual

Overview
Invocation
Background operation
Configuration
DNS configuration
TCP Keep-Alive
Configuration file /etc/gosa-si/server.conf
Configuration file /etc/gosa-si/client.conf
Configuration file /etc/gosa/ou=servers.conf
Hooks
Hook environment
kernel-list-hook
package-list-hook
user-msg-hook
pxelinux-cfg-hook
TFTP hooks
new-config-hook
trigger-action-hook
registered-hook
activated-hook
detect-hardware-hook
fai-progress-hook
fai-savelog-hook
Interfacing with go-susi
TCP connection to [server]/port
TCP connection to [faimon]/port
TFTP server on [tftp]/port (UDP)

Signals
/var/lib/go-susi database

jobdb.xml
serverdb.xml
clientdb.xml
Messages
Message transmission protocol
Message structure and common elements
Reply structure
Error replies
Encryption keys
Jobs
job trigger action
gosa trigger action *
job trigger activate new
gosa set activated for installation
job_set activated for installation
job send user msg
gosa query jobdb
gosa delete jobdb entry
gosa update status jobdb entry

*

Server - Server
new_server
confirm _new_server
foreign job updates
new foreign client
trigger wake

Client - Server
here i am

new_ key

reqgistered
new ldap config

new ntp config
detect hardware
detected hardware
trigger action *
Installation and Softupdate
set activated for installation
CLMSG PROGRESS
CLMSG GOTOACTIVATION
CLMSG save fai log
CLMSG <FAI MONITOR EVENT>
CLMSG TASKBEGIN / CLMSG TASKERROR /CLMSG TASKEND
CLMSG TASKDIE
CLMSG check
Query various information
gosa query fai server
gosa query fai release
gosa _query packages list
gosa get available kernel
gosa show log by mac
gosa show log files by date and mac
gosa get log file by date and mac
Miscellaneous
gosa ping
panic
sistats
gosa trigger reload Idap config
gosa recreate fai release db
Deprecated
CLMSG CURRENTLY LOGGED IN
CLMSG LOGIN
CLMSG LOGOUT
information sharing
usr_msg
confirm usr msg
Appendix
sibridge
SYNOPSIS
DESCRIPTION
OPTIONS
generate package list
SYNOPSIS
DESCRIPTION

WARNING
ENVIRONMENT
initrd autopack
SYNOPSIS
DESCRIPTION
OPTIONS
License

Overview

go-susi is a daemon that performs the following functions:
e Maintain various databases for GOsa. For instance go-susi manages a database of Debian
packages that GOsa presents to the user for creating package lists.

e Send messages to clients on behalf of GOsa to trigger some action such as wake-on-lan.

e Maintain a schedule of jobs and trigger their execution at the appropriate time.

e Monitor the progress of long-running jobs such as installations.

e Communicate the job schedule and progress to other servers so that each instance of GOsa can
query up-to-date data from its respective go-susi instance.
Collect data from clients and make it available to GOsa (e.g. installation logs).
Query an LDAP directory on behalf of GOsa.
Make changes to LDAP data on behalf of GOsa or in reaction to other events (such as job
completion).

Invocation

Most of the time you would not invoke go-susi directly. The preferred way to invoke go-susi is to use
appropriate Upstart/SystemD jobs.
When invoked directly, go-susi understands the following command line arguments:
--help
print usage and exit.
--version
print version and exit.
--stats
send a running go-susi process an sistats message, print out the returned data and exit.
-c <file>
go-susi will read its configuration from <file> instead of the default location. If both --test and -c are
specified, the last switch on the command line will determine the config file location.

-£
start with a fresh database. go-susi will not load data from /var/1ib/go-susi.

-V
go-susi will log INFO level log messages (by default only ERRORSs are logged). INFO level
messages may aid the administrator in debugging problems.

-vv

go-susi will log INFO and DEBUG level log messages. DEBUG level messages are useful only for
developers and may produce so much data that it affects performance. They also contain cleartext
passwords.
--test=<dir>

e go-susi will read configuration files from <dir> instead of /etc/gosa-si.

e the default log file will be <dir>/go-susi.log.

e the database files will be stored in <dir> instead of /var/lib/go-susi.

e installation/softupdate logs will be stored in <dir> instead of /var/log/fai.

Background operation

go-susi does not put itself into the background, does not create a new session and does not ignore

SIGHUP. Nor does go-susi create a PID file. If you want to do any of these things from a shell script (e.g. a
classic init script), use utilities such as setsid(1), nohup(1) and start-stop-daemon(8) in combination with the
shell's & operator, subshells, exec and variables like $BASHPID (which gives the PID of the subshell unlike
$%). Note that none of these things is necessary when go-susi is invoked by Upstart/SystemD.

Configuration

DNS configuration

go-susi will use DNS to locate other go-susi and gosa-si instances. When go-susi starts it will contact other
servers listed in DNS to update its job schedule and announce its presence so that the other servers will
pass on future information to the new go-susi instance. This can be disabled via
[ServerPackages]/dns-lookup.

To list a server in DNS, create an SRV record for the service "gosa-si" and protocol "tcp" within the same
subdomain of the go-susi that should pick it up.

TCP Keep-Alive

In order to keep its job database consistent with its peers, go-susi needs to detect when a peer is
unreachable. Error conditions that close the TCP connection to the peer, such as when the peer process
crashes or is shut down, are always detected reliably. However error conditions at the network level, such
as a broken network cable, can only be detected if TCP keep-alive is properly configured.

By default the Linux kernel will not send the first keep-alive packet until hours after the last data
transmission. This is too long if you want go-susi to have an accurate up-to-date view of peer jobs. The
following commands configure the kernel to start keep-alive when no data has been transmitted for 30s, to
wait 10s between keep-alive packets and to mark the connection as broken if 5 keep-alive packets remain
unanswered. This causes broken connections to be detected after about 1 %2 minutes.

echo 30 >/proc/sys/net/ipv4/tcp keepalive time
echo 10 >/proc/sys/net/ipv4/tcp keepalive intvl
echo 5 >/proc/sys/net/ipv4/tcp keepalive probes

Configuration file /etc/gosa-si/server.conf

/etc/gosa-si/server.conf configures various aspects of go-susi's behaviour. It has the following general
structure:

[sectionl]

paraml = valuel
param2 = value?2

[section?]
go-susi evaluates the following sections/parameters from this file. All other sections/parameters are

ignored.

[any section]

key
go-susi collects all keys from all sections and will use them to decrypt messages.
[general]
log-file

The path of go-susi’s log file. Default is /var/log/go-susi.log.
fai-log-dir

The directory where the subdirectories for client log files received via
CLMSG _save fai log will be created. Defaultis /var/log/fai.
kernel-list-hook
The path of a program that generates a list of kernels supported for each release. See the
section kernel-list-hook further below. Defaultis /usr/1ib/go-
susi/generate kernel list.
package-list-hook
The path of a program that generates a list of packages included in each release. See the
section package-1list-hook further below. Default is /usr/1ib/go-
susi/generate package list.
user-msg-hook
The path of a program to handle job_send user msg messages. See the section user-
msg-hook further below. Default is /usr/lib/go-susi/send user msg.
pxelinux-cfg-hook
(deprecated, see [tftp]//path for the replacement feature) The path of a program that will be
called when go-susi's TFTP server is asked for a file that matches "pxelinux.cfg/01-
<MAC>", See the section pxelinux-cfg-hook further below. Default is /usr/1ib/go-
susi/generate pxelinux cfg.
new-config-hook

The path of a program that will be called when go-susi receives a message of type
new_foo_config (for all kinds of "foo"). See the section new-config-hook further below.
Defaultis /usr/lib/go-susi/update config files.

trigger-action-hook
The path of a program that will be called when go-susi receives a message of type
trigger action_foo (for all kinds of "foo"). See the section trigger-action-hook
further below. Default is /usr/lib/go-susi/trigger action.

registered-hook
The path of a program that will be called when go-susi has completed a successful
registration at an si-server. See the section registered-hook further below. Default is
/usr/lib/go-susi/registered.

activated-hook
The path of a program that will be called when go-susi receives a
set activated for installation message. See the section activated-hook
further below. Default is /usr/1ib/go-susi/activated.

detect-hardware-hook
The path of a program that will be called when go-susi receives a detect hardware
message. See the section detect-hardware-hook further below. Default is
/usr/lib/go-susi/detect hardware.

fai-progress-hook
The path of a program that go-susi will launch and whose output it will read continually to
provide FAI progress events that go-susi will convert into CLMSG_* messages. See the
section fai-progress-hook further below. Default is /usr/1ib/go-
susi/fai progress.

fai-savelog-hook
The path of a program go-susi calls when it sees "TASKEND savelog" in the output from
fai-progress-hook. The output from this program is sent as CLMSG_save fai log to the
registration server. See the section fai-savelog-hook further below. Default is
/usr/lib/go-susi/fai savelog.

[server]

port
The port the server should listen at for XML messages. Default is 20081.

ldap-uri

URI for connecting with the LDAP server. Default is 1dap://localhost:389.
ldap-base

A DN. LDAP lookups will be restricted to the subtree rooted here. Default is c=de.
new-systems-base

Full DN or partial DN ending in ",". In the latter case 1dap-base will be appended. LDAP

objects for new systems will be created under this base. Default is "ou=incoming, ".
ldap-admin-dn

DN of the account to use for write access to LDAP. There is no default value. If this option is

not set, go-susi will function in client-only mode, i.e. basically behave like a gosa-si-client,

whereas otherwise it would behave like a combination of gosa-si-server and gosa-si-client.
ldap-admin-password

Password of the account to use for LDAP write access. Default is "password".
ldap-user-dn

DN of the account to use for read access to LDAP. Default is empty which means

anonymous access.
ldap-user-password

Password of the account to use for LDAP read access. Default is empty.

ip
Name or IP address with or without port of the preferred server to register at when operating
in client-only mode. If go-susi operates as a full server, it ignores this setting and only
registers at itself. If no port is specified, [server] /port is used.
If registration at this server fails and [ServerPackages]/address lists servers, these will
be tried and if [ServerPackages]/dns-1ookup is true, servers listed in DNS will be tried,
too.
dns-lookup
See [ServerPackages]/dns-lookup. The option may be specified in either section, but
[ServerPackages] takes precedence.
[client]
port
A list of port numbers separated by commas and/or whitespace. The server expects
standard clients to listen on one of these ports. Clients listening on other ports will be
considered test clients and some functionality will be disabled for them. The
[server]/port is automatically appended to this list. Default is 20083, [server] /port.
[faimon]
port
The TCP port go-susi will listen on for FAI status messages. Default is “disabled”.
[tftp]
port

The UDP port for go-susi's built-in TFTP server. Default is 69. Use “disable”, “none” or
anything else that is not a valid port to disable the functionality.

/path
Every parameter in the [tftp] section that starts with a slash "/" specifies a mapping from
a virtual path that may be requested from the TFTP server (without the leading slash) to the
data the TFTP server should send in response.
If there is nothing on the right side of the "=" for the parameter, the TFTP server will respond
with a "File not found" error, however this will be logged as an INFO! rather than an
ERROR!.
If the value on the right side of the "=" does not start with "|", it is the actual filesystem path of
the file whose contents should be returned.
If the value on the right side of the "=" does start with "|", it is the path of a hook to execute.
See the section TFTP hooks for details.

/~path_regex

Like /path (see above) but "path regex is treated as a regular expression (including the
"A" which means that the regex has to match at the start of the TFTP request).
If the value on the right side of the "=" does start with "|", it is the path of a hook to execute,
optionally followed by arguments to pass. The stdout of that hook will be sent as response to
the TFTP request.
The value to the left of the may contain references to capturing groups in the regex.
${1}, ${2}, ${3},... refertothe 1st, 2nd, 3rd,... capturing group. ${name} refers to a
named capturing group. A literal $ has to be written as $5. The curly braces may be
omitted, but be aware that e.g. "$1x" is interpreted as "5 {1x}" which is probably not what
you want.
If multiple /path and/or /"path regex linesinthe [tftp] section match an incoming
TFTP request, the /ast one wins.
[ServerPackages]

address
A list of peer servers (format host:port) separated by commas and/or whitespace to
communicate with in addition to those listed in DNS.

dns-lookup
If false, then SRV records from DNS for tcp/gosa-si servers will be ignored. Note, however,
that if another server contacts go-susi of its own accord, go-susi will start talking to this peer
regardless of dns-lookup.

domains
When looking up machine names (e.g. for wake-on-lan) that are not fully qualified, if DNS
can not resolve the name, re-attempt with each of the domains from this list appended. The
list's entries may be separated by commas or spaces and each entry may or may not start
with a dot.

Configuration file /etc/gosa-si/client.conf

For backwards compatibility with gosa-si-client, go-susi reads the configuration file /etc/gosa-
si/client.conf in addition to server.conf. Both files are interpreted exactly the same. If both are
present, settings from server.conf override conflicting settings from client.conf.

Configuration file /etc/gosa/ou=servers.conf

If this file exists, each line is interpreted as a DN. Whenever go-susi looks for repository servers, it will in
addition to searching the complete tree under [server]/ldap-base also search under each of the DNs
listed in this file with one-level scope. The same configuration file is used by 1dap2fai.php from the
gosa-fai-helpers package. Use this file if you have repository server objects located in a part of the
LDAP tree that is not under [server]/ldap-base.

Hooks

go-susi outsources several functions that are directly integrated into gosa-si-server to external programs.
These hook programs are configured in server.conf. To disable a hook completely, set it to
"/bin/true". Do notuse "/dev/null"! That will cause unnecessary ERROR messages. Only use
"/dev/null" in places where a non-executable file is to be suppressed.

Hook environment

All hooks get a standard set of environment variables:
MAC, IPADDRESS, SERVERPORT, HOSTNAME and FQDN. All of these refer to the machine running the

hook.

kernel-list-hook

go-susi relies on an external program to provide the list of kernels supported for each release (see
message gosa_get available kernel). go-susi calls this program after calling package-list-hook
and passes it the same PackageListCacheDir environment variable, so the kernel-1list-hook may use
the cache created by package-list-hook.

The hook is expected to print to standard output a list in LDIF format that lists all supported releases with all
supported kernels. Each supported release should have at least one entry called "default". The
following example demonstrates the syntax:

dn: cn=vmlinuz-3.0.0-16-generic,ou=kernels,ou=4.1.0,ou=plophos,ou=fai
cn: vmlinuz-3.0.0-16-generic
release: plophos/4.1.0

dn: cn=default, ou=kernels,ou=4.1.0,ou=plophos,ou=fai
cn: default
release: plophos/4.1.0

dn: cn=default, ou=kernels,ou=plophos,ou=fai
cn: default
release: plophos

The above example lists two releases. Release plophos/4.1.0 has two available kernel options.
Release plophos on the other hand has only the default option.

The DNs are arbitrary and not evaluated by go-susi. They can even be left out completely.

The attribute names are not case-sensitive.

You can use base64-encoding with LDIF’s double-colon syntax.

package-list-hook

go-susi relies on an external program to provide the list of packages included in each release and which
debconf parameters they support (see message gosa query packages list). go-susi calls this hook
on startup and when it receives the SIGUSR2 signal. The hook is expected to print to standard output a list
in LDIF format that contains the complete package database. The hook will receive the following
environment variables:

PackageListCacheDir:
If the hook maintains a package cache, it should store it in this directory. Note that this
directory contains other go-susi files that the hook must not touch.

PackageListDebconf:
When go-susi calls the hook for the first time on startup it passes the value "cache" in this
variable. This tells the hook that it should not perform time-consuming scans of packages to
extract debconf templates. It should only report templates if it can do so from cached data.
The purpose is to get the list of packages as quickly as possible.
When the hook has finished executing the "cache" run, go-susi will immediately call the
hook again, this time with the value "depends" in this variable. This tells the hook that it
may perform package scans to extract debconf templates, but should restrict itself to
scanning packages whose entry in the Packages file includes the sub-string "debconf" on
the Depends or Pre-Depends line. The purpose of this hook call is to get a mostly
complete list of debconf templates as quickly as possible.
When go-susi calls the hook in reaction to a SIGUSR2 signal, it passes the value "all" in
this variable. At this point the hook may want to scan all packages for debconf templates to
be able to report a complete list. However the hook should still return in a reasonable time. It
is recommended that after a maximum of 1h running time the hook should present the
results it has and make a note of any packages that are still unscanned so that it can
continue the scan the next time the SIGUSR2 signal is sent (which typically happens each
night via a cron job).

PackageListFAlrepository:
This variable contains a space separated list of all FAlrepository attributes from LDAP (e.g.
"http://ftp.debian.org/debian|none|jessie|main, contrib") and tells the
hook which repositories it should scan for packages.

Example ouput from hook:

Package: console-setup

Release: plophos

Version: 1.34ubuntulb

Version: 1.35

Section: utils

Release: plophos/4.1.0

Version: 1.36

Section: main

Description: console font and keymap setup program
Templates:: ClR1IbXBsYXR10i...wgdXN1lCgo=

Release: plophos

Repository: plophos-backports
Repository: plophos-updates
Repository: plophos-security

Package: sed

Release: plophos

Repository: plophos-security

Section: lhm/utils

Version: 4.2.1-61hm2

Description: The GNU sed stream editor

The attributes Package, Section, Version and Description correspond directly to their counterparts
from the Debian control file. The Release attribute specifies the release (aka "distribution") to which the
entry belongs. Multiple Version attributes may be present if multiple versions are available for the same
release.

The Templates attribute ("Template" without "s" is accepted as an alias) is the complete contents of
the templates file describing the debconf parameters of the package (if it has any).

The Repository attribute, if present, informs go-susi that the entry refers to a (version of a) package that
is not found in the main repository for the respective release. All Repository values are collected and
added (with a "+" prefix) to the list of available FAI classes for the corresponding release. The FAI backend
recognizes these pseudo-FAl classes and creates appropriate /etc/apt/sources.list.d/ files for
them.

The hook may include Release/Repository groups in its output without any package information to
inform go-susi about existing repository paths even if they do not (yet) contain packages.

To reduce go-susi's memory usage and improve its performance, it is possible to combine the information
for multiple releases for the same package into a single entry. Such an entry must start with the Package
attribute and must be followed by at least one Release attribute. In order to determine the attribute values
for attribute A for release R, the lines following Package will be scanned for the first Release: Rline and
then for the first A attribute line after that. This and all following 2 attribute lines up to the next Release line
are A attribute values for R.

user-msg-hook

go-susi relies on an external program to process user notifications from job_send user msg and
usr_msg. When a job_send_user_msg is up for execution or when a usr_msg message is received,
go-susi calls the program configured in [general] /user-msg-hook. The hook will receive the following
environment variables:

job:
The XML of the job entry as returned by gosa_query_jobdb message (with either <job>
or <xml> as the outermost tag).

foo:
For each child element <foo> of <xm1> there will be a corresponding environment variable
with the element's text content (not using XML escaping like &1t ;). If there are multiple child
elements with the same name, their text values will be concatenated separated by newlines.

Example:

The following hook script transmits messages to users via email.

The environment variables Suser, S$subject, S$group and S$Smessage
come from the elements of the job send user msg <xml> message.

users="Suser"

for g in Sgroup ; do
filter=" (& (cn=%g) (objectClass=posixGroup))"
members="S$ (ldapsearch -x -LLL "$filter" memberUid)"
users="Susers $(echo "Smembers" | sed -n 's/memberUid: //p")"
done

for user in $users; do
address=$ (ldapsearch -x -LLL cn=Suser mail | sed -n 's/mail: //p")
echo "$message" | mail -s "Ssubject" "Saddress"

done

pxelinux-cfg-hook

This configuration option is deprecated. It is converted to the following settings:

[tftp]
/*pxelinux.cfg/[0-9a-f]{8} (-[0-9a-f]1{4}){3}-[0-9a-f]1{12}$ = # suppress ERROR!
/" "pxelinux.cfg/01- (?P<macaddress>[0-9a-f]{2} (-[0-%9a-f]{2}){5})$ = |<hookpath>

These settings are assumed to be at the very top of the configuration file so that they will only be used for
requests that have no matching pattern in the [tftp] section. See the section TFTP hooks for more
information.

If you need to disable this backwards-compatibility behaviour completely, use

[general]
pxelinux-cfg-hook = # disable backwards-compatibility rules

TFTP hooks

When go-susi's built-in TFTP server is asked for a file that matches /path or /"path_regexin the
[tftp] section and the mapping on the right side of the "=" starts with "|", the remainder is used as the
path of a hook to execute. If the program exits with 0 status its standard output is sent as response to the
TFTP request.

The hook will receive the following environment variables:

tftp_request: (always present)
The path requested in the TFTP request. Note that this path does not usually start with "/".

groupname:
If the hook was called because the request was matched by a /“path regex and
path regex contains named capturing groups, the captured subexpressions will be passed
in environment variables whose names correspond to the group names.

macaddress:
A named capturing group (see previous paragraph) whose name is "macaddress" gets
special treatment. All characters that are not hex digits will be removed from the captured
subexpression, it will be converted to lower case and 0-padded or truncated to 12
characters. Colons will be inserted to form a MAC address in canonical syntax.

dn, faistate,...:
If a capturing group with name "macaddress" was matched (see previous paragraph) and an
LDAP object exists for that MAC address, its attributes will be passed in environment
variables named after the attributes (in all lower case). The dn is always present in that
case. The set of other attributes may vary.

new-config-hook

When go-susi receives a new_foo_config message (e.g. new_ldap_configq) it calls this hook to
update system configuration files.
Depending on the received message the hook will receive some of the following environment variables:

new_ldap_config:
When this variable is non-empty, it means that LDAP configuration should be updated. The
following environment variables may be present in that case, depending on whether the
corresponding elements were part of the new_ldap config message that triggered the
hook:
admin_base, department, Idap_base, Idap_uri, release, unit_tag:
See the description of new_ldap config for details.
Note:
Multiple Idap_uri values may be present. If so they will be separated by newlines in
the Idap_uri environment variable.
new_ntp_config:
When this variable is non-empty, it means that NTP configuration should be updated. The
following environment variable will usually be present (but may not be in case the
new ntp config did not contain any servers):
server:
If present and non-empty this is a newline-separated list of NTP servers.

trigger-action-hook

Client messages of the type trigger action_ * are usually intended to trigger a popup message to
inform the user about an imminent action. go-susi calls the program configured as [general] /trigger-
action-hook to perform these actions. The hook will receive the following environment variables in
addition to the standard variables:

xml:
The XML of the trigger action * message.

foo:
For each child element <foo> of <xm1> there will be a corresponding environment variable
with the element's text content (not using XML escaping like &1t ;). If there are multiple child
elements with the same name, their text values will be concatenated separated by newlines.

registered-hook

Whenever go-susi has successfully registered at a server (via here_i_am/registered), it calls the hook
configured as [general]/registered-hook. The hook will not be called for erroneous registered
messages. Note that this does not mean that the registration server has changed. The hook will receive the
following environment variables in addition to the standard variables:

xml:
The XML of the registered message from the successful registration.
foo:
For each child element <foo> of <xm1> there will be a corresponding environment variable
with the element's text content (not using XML escaping like &1t ;). If there are multiple child
elements with the same name, their text values will be concatenated separated by newlines.
activated-hook

When go-susi receives a set_activated for installation message, it calls the hook configured as
[general] /activated-hook. The hook will receive the following environment variables in addition to
the standard variables:

xmil:
The XML of the set_activated for installation message.

faistate:
This reflects the <faistate> element of the message. The sending server sets this to the
value of the FAIstate attribute of the target machine's LDAP object.

detect-hardware-hook

When go-susi receives a detect hardware message, it calls the hook configured as

[general] /detect-hardware-hook. The hook only receives standard environment variables. The
hook is expected to print on its standard output the system's hardware configuration in LDIF format. The
DN is ignored and may be omitted. The output from the hook will be sent back to the si-server in a
detected hardware message.

Be careful when including attributes like "cn" or "ipHostNumber" . go-susi permits changing these via
detected harware messages.

Attention:
The hook is expected to complete quickly. If it takes too long, go-susi will time out, ignore the hook's
output and send an empty detected hardware message to the server, so that a pending
installation does not stall.

Example hook output:
dn: cn=foomachine, ou=somewhere, c=de
ghCpuType:: WjgwLCAOTUh6Cg==
gotoModules: ppdev
gotoModules: gameport

fai-progress-hook

When go-susi starts up, it will launch the program configured as [general]/fai-progress-hook and
will continually read its standard output line by line and will translate each line to a corresponding CLMSG_ *
message that it will send to the si-server where it is currently registered.

Example:
TASKBEGIN extrbase

is converted into

<xml>
<header>CLMSG_TASKBEGIN</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_IASKBEGIN>extrbase</CLMSG_IASKBEGIN>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

Example:
TASKERROR instsoft 421 warn:install packages: packages missing

is converted into

<xml>
<header>CLMSG TASKERROR</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_TASKERROR>

instsoft 421 warn:install packages: packages missing

</CLMSG_TASKERROR>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml

fai-savelog-hook

go-susi launches the program configured as [general]/fai-savelog-hook when it sees "TASKEND
savelog" in the output from [general]/fai-progress-hook. If the hook writes to its standard output
data in the format described below, it will be passed on to the registration server in a
CLMSG_save fai log message. When the logs have been transferred to the server, the hook will receive
a newline on its standard input.

Hook output example:
log file:fstab:IyAvZXRjL2...c2RhNQo=
log file:format.log:U3Rhc...M2I50DEK

install

Format Explanation:
Each line in the output begins with the string "1og file:" followed by the name of a log file,
followed by " : " followed by the base64 encoded contents of the log file. Newline signals the end of
the base64 block, so make sure that the base64 encoder used does not wrap the data. The final
line of the output has to be either "install" or "softupdate" and specifies the type of job the
logs are for. The final line has to be terminated by a newline. Any further output past that will be
ignored.

Interfacing with go-susi

TCP connection to [server] /port

The main way of accessing go-susi's functionality is by connecting to it via TCP on the port configured in
[server]/port and sending XML-formatted requests. Depending on the kind of request go-susi may
return an XML-formatted answer. Separate go-susi instances will communicate via TCP connections. GOsa
also uses TCP to interface with go-susi.

TCP connection to [faimon] /port

go-susi listens on the TCP port configured as [faimon] /port and logs messages received there if the
loglevel is set to DEBUG. Nothing else is done with these messages.

TFTP server on [tftp] /port (UDP)

go-susi runs a read-only TFTP service. This service supports the tsize and blksize options. It serves 2
kinds of files. The first are those pre-configured in the [tftp] section of the configuration. In addition to
these, go-susi will call the [general] /pxelinux-cfg-hook program to generate pxelinux
configuration files on the fly. See the section pxelinux-cfg-hook for more details.

Signals

SIGUSR2 - this signal causes go-susi to call the kernel-list-hook and package-list-hook programs to
rebuild the kernel and packages databases. While the databases are being rebuilt, the old data continues
to be available. This is different from gosa-si-server.

SIGUSRL1 - ignored

SIGHUP, SIGINT, SIGQUIT, SIGTERM -these signals cause a clean shutdown of go-susi after all
persistent databases have been saved.

SIGABRT - causes an immediate unclean exit with backtraces of all goroutines. Useful for debugging.

/var/lib/go-susi database

go-susi maintains its database in memory but copies changes to XML files stored in the directory
/var/lib/go-susi. When go-susi starts up, it will populate its internal database with the data from these
files. This allows data to be persistent across restarts of the go-susi daemon.

Tip:
Use the command line tool tidy to view database files. E.qg.:
tidy -xml -indent /var/lib/go-susi/clientdb.xml
jobdb.xml

This file stores jobs scheduled to be executed at a later time as well as progress information for long-
running jobs such as installations.

Each entry in jobdb.xml has the same structure as an <answerX> element from a reply to the
gosa_query_ jobdb message. See that message's description for details.

serverdb.xml

This file stores the other servers known to go-susi as well as the current encryption keys used for
communicating with them.

Each entry in serverdb.xml has the same structure as a new_server message. See that message's
description for details. Note, however, that only <source> and <key> are required elements in a
serverdb.xml entry. The other elements described at new server may or may not be present.

clientdb.xml

This file stores both the clients registered at this server as well as clients registered at peers.
Each entry in clientdb.xml has the same structure as a new_foreign_ client message. See that
message's description for details.

Messages

This chapter lists the XML messages exchanged between the various parties communicating with go-susi.
The messages are grouped into topics with their own sub-sections.

Message transmission protocol

Every message and reply is the base64-encoding of an encrypted XML fragment. The encryption key used
depends on the kind of message. See the code in message/process_msg.go in the functions
GosaEncrypt () and GosaDecrypt () for details on the encryption scheme.

Each message or reply is terminated by LE ("\n") or CRLF ("\r\n") following the base64-text (which
must not be broken by whitespace). It is permissible to send multiple messages over the same TCP
connection. It is the responsibility of the process initiating the connection (i.e. the sender of the 1st
message) to close it when it has finished sending all of its messages and reading all replies. However, if
any party detects an error, it should drop the connection as soon as possible (after possibly returning an
error reply) to avoid lockups.

Message structure and common elements

Most messages follow a common structure and share common elements.

<xml>
<header>prefix foo bar</header>
<source>GOSA<L/source>
<target>123.123.123.123:20081</target>
</xml>

The message elements have the following meaning:
<header>
This identifies the type of message. Most headers have a "prefix " component that a group of
related messages share. A frequent prefix is "gosa " which is used by messages sent by GOsa.
<source>
The sender of the message. Most of the time this is an IP: PORT address of an si-server or client.
However if the message is sent by GOsa, the <source> is "GOSA" .
Developers wishing to interface with go-susi should always fill in an IP: PORT address with the
proper IP of the sending computer. Because the <source> is used as a key in some places the
same sender should always use the exact same <source>.
<target>
The counterpart of <source>. Most of the time this is simply the IP: PORT of the recipient, but some
message types have the MAC address of an affected system in the <target> element and GOsa,
for whatever reasons, usually sets <target> to "GOSA", even though this makes no sense.
Because <target> is not used for message forwarding, it is basically useless.
Developers wishing to interface with go-susi should always fill in the IP: PORT address of the go-susi
process they target.

Reply structure

The term reply as used in this manual refers only to something that is sent back over the same TCP
connection as the message the reply refers to. Most messages do not have replies and the sender typically
closes the connection after sending the message. Some messages trigger return messages sent over a
new connection initiated by the recipient of the first message. These return messages are not referred to as
replies in this manual.

Like messages in general, most replies follow a common structure.

<xml>
<header>foo bar</header>
<source>0.0.0.0:20081</source>
<target>GOSA</target>
<answerl>...</answerl>
<foo_bar></foo_bar>
<session_id>5352</session_id>

</xml>

The message elements have the following meaning:
<header>
The header is often derived from the message the reply is answering by dropping the "prefix ".
<source>, <target>
While these are often simply the swapped values of the corresponding elements from the initial
message, as the example shows they can be even more meaningless.
<foo_bar>
Many replies feature empty elements named like the header.
<session_id>
An implementation detail from gosa-si-server that may be useful in log entries. For compatibility
reasons go-susi adds this element to replies but the contained value is arbitrary.
<answer1>
When a reply may contain multiple datasets with the same structure, they are usually wrapped in
<answerX> elements where X is the index of the answer.

Error replies

If an error occurs while processing a request, the si-server may send an error reply. Usually this is only
done for messages that have regular replies, in particular for messages sent by GOsa. GOsa understands
error replies with the following structure and may present the contained error message as a popup to the
user.

<xml>
<header>answer</header>
<source>123.123.123.123:20081</source>
<target>GOSA</target>
<error_string>Number out of range</error_ string>
<answerl>l1</answerl>

</xml>

The message elements have the following meaning:

<header> always "answer".

<source> the sending server

<target> always "GOSA".

<answer1> always "1".

<error_string>
A human-readable description of the error. The presence of this element, and not
<answer1>1</answer1>, is the best indicator of an error.

Encryption keys

Messages are encrypted with different keys depending on sender and recipient. Unlike gosa-si-server go-
susi accepts all messages encrypted with all keys. When sending, go-susi will follow the gosa-si-server
rules on choosing the key to encrypt the message.
GOsa Server:
Messages by GOsa to the si-server and the server's replies are encrypted with the
[GOsaPackages] key.
Server = Client:
Messages sent by the si-server to si-clients registered at that server are always encrypted with the
key from the most recent here i amor new key message sent by the client.
Server = Server:
Messages sent from one server to another are encrypted with the most recent key exchanged
between sender and receiver via new_server/confirm new server messages.
The only exception to this rule is the new_server message which is encrypted with the
[ServerPackages] key, because when it is sent there is not yet an agreed key.
Client = Server:
Messages sent by an si-client to the si-server where it is registered are encrypted with the key from the
most recent here i am or new_key message sent by the client. The only exception to this rule is the
here i am message itself which is encrypted with the [ClientPackages] key.

Jobs

One of the core features of the si-server is to keep a persistent database of jobs. Each job has a
<timestamp> that determines when the job is to be executed and an <siserver> field that identifies the
server responsible for launching that job when its time has come. Depending on the job's type there may be
other fields. Usually there is a <macaddress> that specifies the machine to be affected by the job.

Jobs are created by GOsa in response to user actions. There is a distinction between jobs to be executed
immediately and jobs to be launched at a future time. However, as far as the messages are concerned the
differences are so minor that go-susi (but not gosa-si-server) treats the two forms as synonyms.

Jobs are stored in the jobdb, which in go-susi is stored in a file jobdb.xml described further above. The
message gosa_query jobdb can be used to extract data from the jobdb. GOsa uses this message for
its deployment status page.

The message gosa_update status_ jobdb entry can modify the fields of an existing job and the
message gosa_delete jobdb entry can be used to remove jobs. Note that GOsa does not allow the
removal of running install jobs. Instead GOsa offers to cancel them. It does this by sending a

gosa trigger action faireboot message.

When it's time to execute a job, the si-server first notifies the target machine (if there is one and it's
reachable) of the job by sending a trigger action_ * message. The target machine may react to this
message by presenting a logged in user with a popup asking the user to log out.

A job has a lifecycle that is reflected in its <status> and <progress> fields which are documented at the
message gosa_query jobdb. The job starts out as waiting, progresses to processing and is
removed from the jobdb when its <status> becomes done. The <progress> field is only used for long-
running jobs like installations.

Jobs are an important part of server-to-server communication. The relevant message

foreign job updates is described not in the present section but the one on server-to-server
communication.

A special role is played by the message job trigger activate new which is used by GOsa for its
CSV-import feature. go-susi reacts to this message by creating an LDAP object for the target system if
there isn't one, as well as creating an installation job and activating the system. With go-susi

job trigger activate new effectively acts as a combination of detected hardware,

job trigger action reinstall and gosa set activated for installation. gosa-si-server
handles things differently.

GOsa's feature for sending messages to users and/or groups results in job_send user msg messages
which differ from ordinary job messages in that they do not target a machine. Other than that they are
treated like other jobs, are stored in the jobdb and can be read with gosa_query jobdb, modified with
gosa update status jobdb entry and removed with gosa delete jobdb entry.

job_trigger_action_*

gosa_trigger_action_*

Purpose:
GOsa Server. Schedule a job for execution at a later time (Job_*) or execute it at once
(gosa_*) . The server that gets this message from GOsa will tell peer servers about the new job
via foreign job updates.
When the job's time has come, a matching trigger action_ * message will be sent to the
affected client (if it is reachable).

Example message:
<xml>

<header>job trigger action lock</header>
<source>G0OSA</source>
<target>00:0c:29:50:a3:52</target>
<timestamp>20120914131742</timestamp>
<macaddress>00:0c:29:50:a3:52</macaddress>
<periodic>7 days</periodic>

</xml>

The message elements have the following meaning:
<header> identifies the kind of job. The following jobs are supported:

*_trigger_action_halt

tell client to shut down (allowing logged in users to log out first)
*_trigger_action_reboot

tell client to reboot (allowing logged in users to log out first)
*_trigger_action_faireboot

abort FAI operation (e.g. installation) in progress
*_trigger_action_reinstall

set faiState to “install’; tell users to log out; wake client if necessary
*_trigger_action_update

set faiState to “softupdate”; tell users to log out; wake client if necs.
*_trigger_action_localboot

set faiState to “localboot” and remove pending install/softupdate jobs
*_trigger_action_wake

send wake-on-lan (WOL) to target
*_trigger_action_lock

set gotoMode to locked
*_trigger_action_activate

set gotoMode “active”; send set _activated for installation

<header> will become <headertag> in foreign job updates etc.

<macaddress>, <target>
At least one of these elements must contain a valid MAC address that identifies the machine to be
affected by the job. If <macaddress> is present, it will be preferred.
The <target> value will become <targettag> in foreign_job_ updates etc.

<timestamp> (optional)
When the job should be executed. The format is "YYYYMMDDHHMMSS". The time is local time of
the server that receives the message and takes time zone (in particular daylight saving time) into
account. IOW the job will be executed at the earliest time that the server's clock has a value greater

than the job's timestamp.
If <timestamp> is missing, the timestamp will be considered to be "now" (meaning the job will be
executed as soon as possible). "gosa_trigger *" messages do not usually have a timestamp.
<periodic> (optional)
The job will be repeated in regular intervals. The format is a number followed by " " followed by
either "seconds", "minutes", "hours", "days", "weeks", "months" or "years".
Also permitted is <periodic>none</periodic> which is the same as not having <periodic>.
If a job is scheduled with <periodic> it will be scheduled to run for the first time at the time specified
in <timestamp>. It will run for the 2nd time at the time that results from adding the <periodic>
duration to the timestamp, for the 3rd time at the time that results from adding the duration to the
timestamp of the 2nd time, and so on. If, at the time the job finishes, one or more of the repeat times
have already passed, they will be skipped. For example, if a job is scheduled every "1 _minutes"
and the 1st run takes 1 %2 minutes, the 2nd run will be skipped and the next run will be the 3rd which
will start %2 minute after the end of the 1st run.
Note that using the unit "days" is different from using multiples of 24 "hours" because of daylight
savings time which may cause days to be longer or shorter. A "week" is the same as 7 "days".
Note that using the unit "months" is not the same as any particular number of days because
months vary in length. The same applies to "years". E.g. a job scheduled with
<timestamp>20120101000000</timestamp> and <periodic>1_ months</periodic> will run on
2012-01-01, then 2012-02-01, then 2012-03-01,...
29 February will wrap around to 1 March during a non-leap year and from that point on the
timestamp will stay at the 1st of the month, even during future leap years. 31 will wrap around to 1
during short months and will stay at 1.
IOW, never schedule jobs with a periodic unit of "months™" on days >= 29.

gosa-si-server notes:
This message is handled in modules/GosaPackages.pm:process job msg ().
gosa-si-server does not return a reply to the gosa_* messages only to job_*.

go-susi notes:
<periodic> units "years" and "seconds" are go-susi extensions not supported by gosa-si. The
unit "seconds" is for testing only.
go-susi treats gosa_* and job_* the same. In particular go-susi will send
foreign job updates messages for both. gosa-si doesn't do this for gosa_* messages.
gosa-si-server checks its foreign_clients database and if it finds that the affected client is registered
at a peer server it will forward the job request to the peer with an added <forward to gosa>
element. go-susi does not do this at the time it receives the message but waits until the time the job
is up for execution and then forwards the job if necessary.
go-susi treats gosa_set activated for installation as asynonym for
gosa trigger action activate,
go-susi treats trigger action faireboot different from gosa-si-server. gosa-si-server locks
the machine and reboots it, but keeps it in faiState install (if it is installing). The job does not
actually disappear. While this makes sense for the name of the job, it doesn't match how GOsa
uses this job. GOsa sends gosa_trigger action faireboot when "Abort"is selected in the
jobs overview. To better match GOsa's use of this job, go-susi interprets "faireboot" as "abort job".

Example reply:

<xml>
<header>answer</header>
<source>0.0.0.0:20081</source>
<target>GOSA</target>
<answerl>0</answerl>
<session_id>5352</session_id>

</xml>

The reply elements have the following meaning:
<answer1> 0 if the job was successfully added to the jobdb or a numeric error code if there was a
problem. In the latter case there will be an <error_string> element with a human language
description of the error.

GOsa notes:
GOsa sends this message in class _gosaSupportDaemon.inc:append (). The
"job trigger action_ *" string comes from get schedule action() or
get_trigger_action () which are defined in class_DaemonEvent.inc and whose values are
set in the respective subclass, e.g. class_DaemonEvent _halt.inc.

GOsa ignores the reply and in fact appears to close the connection after sending the message, so that the

reply cannot even be delivered.

job_trigger_activate_new
Purpose:

GOsa=>Server. Create a new system object and matching install job. This message is sent by GOsa
for each entry when using the CSV import feature. It's typically used to import a whole batch of new
systems ready for installation, so that they only need to be plugged in and turned on.

Example message:

<xml>
<header>job trigger activate new</header>
<source>GOSA<L/source>
<target>00:0c:29:50:a3:52</target>
<timestamp>20130417120000</timestamp>
<ip>172.16.2.146</ip>
<fgdn>grisham.tvc.example.com</£fqgdn>
<ogroup>Desktops</ogroup>
<base>ou=Direktorium, o=go-susi, c=de</base>
<mac>00:0c:29:50:a3:52</mac>
<macaddress>00:0c:29:50:a3:52</macaddress>
<dhcp></dhcp>

</xml>

The message elements have the following meaning:

<timestamp> (optional)
A trigger_action_reinstall job with this <timestamp> will be created. If <timestamp> is
missing, it defaults to now.

<base> (optional)
The new system object will be put into cu=workstations, ou=systems, <base> or
ou=servers, ou=systems, <base> depending on whether it is gotoWorkstation or
goServer (based on the <ogroup> information or an existing object). If no information about the
system's type is available, it will be put in new-systems-base.
If an object with the given MAC address already exists elsewhere, it will be moved to the new
location.
If <base> is missing and <ogroup> is an object group, the system will be put into the same ou as
the alphabetically first member system of the object group (even if that ou is not called
"workstations" or "servers").
If <base> is missing and <ogroup> is also missing, <base> will default to [server]/ldap-base
for new entries and keep the old location if the system already exists.
If <base> is missing and <ogroup> is a system, the new system object will be put into the same ou
as the template system (even if that ou is not called "workstations" or "servers").

<mac>, <macaddress>, <target>
One of these elements must be present. If the message has both <mac> and <macaddress>,
<mac> will take precedence over <macaddress> and an error will be logged if they differ.
If either <mac> or <macaddress> is present, <target> is ignored. Otherwise it will be used as MAC
and it is a fatal error if it is not a valid MAC.

<ogroup> (optional)
Either the plain or full-qualified name of a system (i.e. LDAP object with objectClass=GOHard) to
use as a template or the name of an object group (i.e. LDAP object with
objectClass=gosaGroupOfNames).
If <ogroup> is an object group, its member list will be sorted alphabetically and the first GOHard
member will be used as template system.

If no LDAP object exists for the given MAC address, an object will created with a generated name
and the relevant attributes will be copied from the template system.
The gotoMode will always be set to active, irrespective of the template object’s value.
If <ogroup> is missing and there is no existing LDAP object, an incomplete entry will be created in
new-systems-base.

<ip> (optional)
If a new system object is created, its ipHostNumber will be set to this value. This is mainly useful
to make WOL more reliable by telling the server about the subnet of the new system.

<fqdn> (optional)
If <ip> is missing but <fqdn> is present, the <fqdn> will be resolved to an IP via DNS. Note that the
<fqdn> will not be used to name the generated LDAP entry. Like <ip> the purpose of <fqdn> is to
make WOL more reliable.

<dhcp> ignored.

gosa-si-server notes:
gosa-si-server ignores <dhcp> and <target>.
go-susi notes:
go-susi’'s handling of this message is different from gosa-si-server’s in the following respects:
o go-susi creates the system’s LDAP object immediately with a generated name, whereas
gosa-si-server does not create a system object until the system contacts the server.
o go-susi sends a single WOL when the install job triggers at the given <timestamp>,
whereas gosa-si-server keeps sending WOLs until the system contacts the server.
o <ogroup> can be the name of a system to use as template, whereas gosa-si-server requires
it to be an object group.
o If <base> is missing and <ogroup> is an object group, gosa-si-server will derive <base>
from <ogroup>’s DN whereas go-susi derives <base> from the group's first member.
o go-susi creates a normal trigger action reinstall job when it receives this
message.

Example reply:
see job_trigger action *

gosa_set_activated_for_installation

job_set_activated_for_installation

Purpose:

GOsa=>Server. When go-susi executes this job, it treats this as a synonym for
gosa_trigger_ action_activate except that there's no reply. However, when go-susi forwards
this job to another server, it is forwarded with its original header. Because gosa-si-server treats the
2 messages differently, it is important that the correct message is used if there are gosa-si-server
peers.

go-susi hote:
go-susi accepts the alias job_set activated for installation and supports all of the
other elements possible for jobs such as <periodic>. gosa-si-server supports only the gosa_* form
with no job planning elements.

Example message:

<xml>
<header>gosa set activated for installation</header>
<source>GOSA<L/source>
<target>00:16:36:7c:db:3f</target>
<macaddress>00:16:36:7c:db:3f</macaddress>

</xml>

job_send_user_msg

Purpose:
GOsa Server. Send a text message to one or more users and/or groups of users.

go-susi hote:
go-susi does not implement messaging services directly. When the job's execution time as
determined by <timestamp> has come, the external program configured as [general] /user-
msg-hook will be executed. See the manual section on that hook for details.

Example message:
<xml>

<header>job send user msg</header>
<source>GOSA<L/source>
<target>GOSA</target>
<from>Sender Name</from>
<user>userl</user>
<user>user2</user>

<group>groupl</group>
<group>group2</group>

<subject>QmV0cmVmZg==</subject>
<message>TmFjaHJpY2h0Ck5hY2hyaWNodCBazZWlszTI=</message>
<timestamp>20130409122130</timestamp>
<delivery time>20130409122130</delivery time>
<periodic>none</periodic>
<macaddress>GOSA</macaddress>

</xml>

The message elements have the following meaning:

<header>, <periodic> and <timestamp> are the only elements used by go-susi and they have the

same meaning as for job_trigger_action_*.

<macaddress> will be replaced with the go-susi server's MAC.

Example reply:
see job trigger action *

gosa_query_jobdb

Purpose:
GOsa Server. Returns all entries from the jobdb that match a given filter.

Example message:
<xml>
<header>gosa query jobdb</header>
<target>GOSA</target>
<source>GOSA<L/source>
<where>
<clause>
<connector>or</connector>
<phrase>
<operator>eg</operator>
<macaddress>00:1d:60:7e:9b: f6</macaddress>
</phrase>
</clause>
</where>
<orderby>id</orderby>
<limit>
<from>0</from>
<t0>9999999</to>
</limit>
</xml>

The message elements have the following meaning:

<source>,<target> always "GOSA"

<where> (exactly 1) The filter that selects the jobs to return.

<clause> (0 or more)
A filter condition. All <clause> filter conditions within <where> are ANDed. If no <clause> element
is present, all datasets will be selected.

<connector> (0O or 1)
If not provided, the default connector is "AND". All <phrase> filter conditions within a <clause> are
combined by this operator like this:

P,cP,cP;c... P,

where P, are the phrase filters and c is the connector. Possible values for <connector> are "AND"
and "OR" (The case of the word doesn’t matter).

<phrase> (0 or more)
A single primitive filter condition. In addition to one <operator> element (see below) a <phrase>
must contain exactly one other element. The element's name specifies the column name in the
database and the element's text content the value to compare against. The comparison is
performed according to <operator>.
In the case of the jobdb, the valid elements inside <phrase> are <id>, <timestamp>, <status>,
<result>, <progress>, <headertag>, <targettag>, <xmlmessage>, <macaddress>,
<plainname>, <siserver> and <modified>.

<operator> (optional, assumed to be "eq" if missing)
The comparison operator for the <phrase>. Permitted operators are "eq", "ne", "ge", "gt",
"le", "1t" with their obvious meanings, as well as "1like" and "unlike". The case of the
operator name doesn’t matter.
"like" performs a case-insensitive match against a pattern that may include "%" to match any
sequence of 0 or more characters and "_" to match exactly one character. A literal "%" or "_" cannot

be embedded in such a pattern. "unlike" is the negation of "1ike",

The operators "ge", "gt", "le" and "1t" will attempt to convert their arguments to numbers
and do a numeric comparison. If that fails, a string comparison is performed. The other operators
always perform string comparison. go-susi performs all string comparisons case-insensitive, but
gosa-si is case-sensitive (which is a gotcha especially with respect to MAC addresses).

The comparison is performed with the database value as the first operand. l.e. the "gt" operator
will return datasets whose value for the respective column is greater than the comparison value
from <phrase>.

<orderby> (optional)

The name of the column of the database to use for sorting the results, optionally followed by "ASC"
or "DESC" for ascending or descending sort.

<limit> (optional) Requests that only parts of the result set are returned.
<from>

<to>

After sorting query results by <orderby>, skip the first N results (i.e. do not include them in the
reply) where N is the integer inside <from>. Note: The name <from> is misleading because it
suggests that N is the value of the first item to be returned. A negative value is treated like 0.

Return a maximum of N results where N is the integer inside <to>. A negative value means no limit.
Note: The name <to> is misleading since it suggests that N is the value of the last item to be
returned.

gosa-si-server notes:

gosa-si-server probably permits any <connector> that results in a valid SQL statement, not just
"AND" and "OR". But | have not seen this used in the wild, so go-susi doesn't implement any other
connectors.

The implementation of query jobdb is found in the file databases.pm. The parsing of the XML
filter into an SQL statement is done in
/usr/share/perl5/GOSA/GosaSupportDaemon.pm:get where/orderby/limit statem
ent ().

The names <from> and <to> suggest that these tags are intended to specify a range of values to
return but the actual implementation translates <from> to SQL’s OFFSET and <to> to SQL’s LIMIT.
The <operator> is case-insensitive in go-susi (i.e. "eQ" means the same as "eq") but gosa-si-server
requires operators to be lowercase.

gosa-si-server does not support the <operator> "unlike"

go-susi performs all string comparisons case-insensitive, but gosa-si is case-sensitive (which is a
gotcha especially with respect to MAC addresses).

GOsa notes:

GOsa sends these requests in
include/class gosaSupportDaemon.inc:get queued entries () which is called by
plugins/addons/goto/class filterGotoEvents.inc:query() .

Example reply (empty jobdb):
<xml>
<header>query jobdb</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<session_id>2427</session_id>
</xml>
Example reply (2 jobs):
<xml>
<header>query jobdb</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<answerl>
<plainname>grisham</plainname>
<progress>none</progress>
<status>waiting</status>
<siserver>localhost</siserver>
<modified>0</modified>
<targettag>00:0c:29:50:a3:52</targettag>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20120824131849</timestamp>
<id>1</id>
<original id>1</original id>
<headertag>trigger action reinstall</headertag>
<result>none</result>
<xmlmessage>PHhtbD48aGVhZGVyPmpvY190cmlnZ2VyX2Fjd
Glvbl9yZWluc3RhbGw8L2hl1YWR1cPkdPUOESL3NvdXJjZzT48d
GFyZ2VO0PjAwWOjBj0OjI50UwOmEZzOjUyPCI0YXINZXQ+PHRpbW
VzdGFtcD4yMDEyMDgyNDEzZMTg0OTwvdGLtZXNOYWIwPjxtYWN
hZGRyZXNzPjAwOjBj0JI50jUwOmEZzOjUyPCOLtYWNhZGRyZXNz
PijwveGlsPg==
</xmlmessage>
</answerl>
<answer2>
<plainname>grisham</plainname>
<progress>none</progress>
<status>waiting</status>
<siserver>localhost</siserver>
<modified>0</modified>
<targettag>00:0c:29:50:a3:52</targettag>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20120824143205</timestamp>
<periodic>7 days</periodic>
<id>2</id>
<headertag>trigger action reboot</headertag>
<result>none</result>
<xmlmessage>PHhtbD48aGVhZGVyPmpvY190cmlnZ2VyX2Fjd
Glvbl9yZWJIvb3Q8L2h1YWR1cj48cUOESL3NvAXJI)ZT48dGFyZ
2VOPjAWOjBj0OjI50jUwOmEz0jUyPCI0YXINZXQ+PHRpbWVzdG
FtcD4yMDEYMDgyNDEOMz IwNTwvdGltZXNOYW1wPjxwZXJpb2R
pPYz43X2RheXMB8L3BlecmlvZGljPixt YWNhZGRYZXNzPJAWO B
03 I50jUwOmEzOjUyPCOtYWNhZGRYZXNzPjwveGlsPg==
</xmlmessage>

</answer2>
<session_id>5288</session_id>
</xml>

where the base64-encoded <xmlmessage> strings are

<xml>
<header>job trigger action reinstall</header>
<source>G0OSA</source>
<target>00:0c:29:50:a3:52</target>
<timestamp>20120824131849</timestamp>
<macaddress>00:0c:29:50:a3:52</macaddress>
</xml>

and

<xml>
<header>job trigger action reboot</header>
<source>GOSA</source>
<target>00:0c:29:50:a3:52</target>
<timestamp>20120824143205</timestamp>
<periodic>7 days</periodic>
<macaddress>00:0c:29:50:a3:52</macaddress>

</xml>

The reply elements have the following meaning:

<plainname> The name (without domain) of the machine affected by the job.
<progress> Possible values:
"none": The job has not started yet.
"hardware-detection": A detect hardware message has been sent to the client.
"goto-activation": CLMSG GOTOACTIVATION has been received from client.
An integer between 1 and 100 (inclusive) gives a percentage of how far along the installation has
progressed.
<status> Possible values:
"waiting": No action has been performed yet. The server is waiting for the time specified by the
job's <timestamp>.
"processing": The server has started taking action on the job.
"processed": gosa-si uses this to precede "done" in some cases. Not used by go-susi.
"paused:" FIXME???
"done": The job has completed. gosa-si allows finished jobs to be observed for a short period of
time. go-susi however removes them immediately, so that the "done" status can not be observed.
Note that a foreign job updates message can of course contain a "done" status.
"error": Something went wrong. <result> contains more details.
<siserver>
The listen address (IP:port) of the server responsible for processing the job. When gosa-si-server
sends this message, this can also be the word “localhost”. go-susi never returns "localhost".
<modified> Always "1". Ignore.
<targettag>
The <target> from the job_trigger action * message that created the job. This is typically the
same as <macaddress>.
<macaddress> The affected machine's MAC address.

<timestamp>
When the job should be executed. The format is "YYYYMMDDHHMMSS". The time is local time of
the server responsible for the job (see <siserver>) and takes daylight saving time into account.
IOW the job will be executed at the earliest time that the responsible server's clock has a value
greater than the job's timestamp.
<periodic> (optional)
The format is a number followed by “_” followed by either "minutes", "hours", "days",
"weeks", "months" or "years". Also possible is <periodic>none</periodic> which is the
same as <periodic> not being present.
See job_trigger action_* for more information on the exact interpretation of <periodic>.
<id>
A string that identifies the job (not necessarily a number; in particular not a 32bit number). Jobs are
not reindexed when a job is deleted, so some ids may be “missing”. In particular the <id> is not
identical to the XX in <answerXX>. Answers are always numbered starting from 1 with no missing
numbers.
<original_id> (optional)
the <id> of the job on the responsible <siserver> (which may be different from <id>).
<headertag>
Identifies the type of job. Derived from the <header> of the message that created the job by
removing the prefix. E.g. gosa_trigger_action_localboot = trigger_action_localboot.
<result> Further information about the job. Possible values:
"none": No information available.
error description: If <status>error</status>, this is a human-readable description with more
information.
“TASKBEGIN foo” where “foo” is the most recent task sent by the clientina CLMSG TASKBEGIN
message during installation.
<xmlmessage>
base64-encoded <xml>...</xml> message that was used to add this job to the database, usually a
job trigger action * message.

gosa-si-server notes:
New jobs always get the highest existing job <id> + 1. Because unfortunately GOsa uses the id
column to identify a job when it sends gosa delete jobdb entry this seems to allow for a race
condition where user X wants to delete the highest-numbered job but before the request reaches
the gosa-si-server another user Y deletes said job and adds a new job. This would cause user X to
incorrectly delete user Y’s new job.
go-susi does not have this problem because it doesn’t repeat <id> values.
gosa-si-server splits up the <xmlmessage> with whitespace which breaks base64-decoding unless
the whitespace is removed first.
gosa-si-server does not report <original_id>.
gosa-si treats <macaddress> as case-sensitive.

GOsa notes:
AFAICT GOsa doesn't care about the reply's <source>, <target> and <session_id>.
AFAICT GOsa doesn't care about <targettag> and there's no other use | can find. IOW it's
completely useless.

gosa_delete_jobdb_entry

Purpose:
GOsa Server. Remove planned jobs from the database. Sends foreign job updates with
<status>done</status> and <periodic>none</periodic> (or no <periodic> at all) to peer servers
to make them remove the jobs from their databases as well.

Example message:
<xml>
<header>gosa delete jobdb entry</header>
<target>GOSA</target>
<source>G0OSA</source>
<where>
<clause>
<connector>or</connector>
<phrase>
<operator>eg</operator>
<id>1</id>
</phrase>
</clause>
</where>
</xml>

The message elements have the following meaning:
Aside from the <header> the elements are the same as for gosa query Jjobdb.

Example reply:

<xml>
<header>answer</header>
<source>0.0.0.0:20081</source>
<target>GOSA</target>
<answerl>0</answerl>
<session_id>5352</session_id>

</xml>

The reply elements have the following meaning:
<answer1> 0 if the jobs were successfully deleted or a numeric error code if there was a problem.
In the latter case there will be an <error_string> element with a human language description of the
error.

If no job matches the query that is not an error.

gosa-si-server notes:
Some versions of gosa-si-server return broken replies to this message. The contained answer
element is unusable, e.g. <answer1>ARRAY (0xa3dfda8) </answer1>.

go-susi hotes:
When the job to be deleted is another server’s responsibility, go-susi will forward the deletion
request to that server. go-susi will not remove the job from its own database unless the responsible
server reacts to the forwarded request. This means that jobs from servers that are down cannot be
deleted. However, when go-susi cannot establish a connection to a server for some time, it will
automatically purge that server’s jobs from its database.

GOsa notes:
This message is sentin class gosaSupportDaemon.inc:remove entries().
GOsa always uses the id column to identify the jobs. See the notes for gosa_query jobdb
regarding <id>.
GOsa does not care about the actual reply. The only requirement is that the outer-most tag must be
either <xml> or <count>. If it isn't GOsa will log an error.

gosa_update_status_jobdb_entry

Purpose:
GOsa Server. Change properties of a scheduled job. Sends foreign job updates with the
new data to peer servers.

Example message:
<xml>
<header>gosa update status jobdb entry</header>
<target>GOSA</target>
<source>GOSA</source>

<where>
<clause>
<connector>or</connector>
<phrase>
<operator>eg</operator>
<id>1</id>
</phrase>
</clause>
</where>
<update>
<timestamp>20121019132424</timestamp>
</update>
</xml>

The message elements have the following meaning:
Aside from <header> and <update> the elements are the same as for gosa_ query jobdb.

<update>
Each subelement of <update> sets a new value for the respective aspect of the job(s). All
other aspects of the job remain unchanged. To unset <periodic>, include
<periodic>none</periodic>. It is permissible to change <status> with this command
although this only make sense in a few cases.
Note that it is possible to change multiple jobs at the same time with an appropriate
<where>, but there is only one <update> element that is applied to all selected jobs.

Example reply:

<xml>
<header>answer</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<answerl>0</answerl>
<session_id>5352</session_id>

</xml>

The reply elements have the following meaning:
<answer1> 0 if the jobs were successfully deleted or a numeric error code if there was a problem.
In the latter case there will be an <error_string> element with a human language description of the
error.
If no job matches the query that is not an error.

gosa-si-server notes:
gosa-si-server disallows changing the timestamp on jobs that have status “processing”.
go-susi notes:
When go-susi receives an update request for a job that is another server’s responsibility, it will
forward the request to that server. go-susi will not change its own job information immediately but
will wait for the responsible server to react. This means that if the responsible server is down,
gosa_update_ status_jobdb_ entry will have no observable effect on go-susi’s database.
GOsa notes:
GOsa has a bug in its edit job page (if you select a job’s “Edit” icon on the "Deployment status”
page). If a job has <periodic> set and you uncheck the respective checkbox when editing the job,
the <periodic> will not actually be cleared, because GOsa omits the <periodic> from the <update>
element instead of setting it to “none”.
This message is sentin class_gosaSupportDaemon.inc:update entries().
GOsa always uses the id column to identify the jobs. See the notes for gosa _query jobdb
regarding <id>.
GOsa does not care about the actual reply. The only requirement is that the outer-most tag must be <xml>.
If there is an <error_string> element, GOsa will log an error.

Server - Server

There are various reasons for running multiple servers with GOsa and an accompanying si-server. To
make administration easier, si-servers exchange information that allows different instances of GOsa to be
used interchangeably. For example you can plan a job in one GOsa and cancel the job in another.

When an si-server starts up it looks into its configuration file and DNS for peer si-servers. It will then send a
new_ server message to each peer. Peers that are reachable will send confirm new server
messages in return. After this exchange the servers have a common encryption key and know about each
other's list of registered clients.

Whenever one server changes the information about a job in its database, e.g. because of a message like
gosa_delete jobdb_entry or because a client performing an installation has sent a
CLMSG_PROGRESS, the server informs all of its peers about the change with a foreign job updates
message, so that the peers can apply the same change to their databases.

Because a gosa-si-client only accepts messages from the server it registered at, only that server can
properly execute jobs that require sending messages to that client. In particular this affects jobs that require
the client to reboot or shut down. To solve this problem the server will forward such jobs to the peer where
the client is registered.

To make forwarding work, each server must know at all times which clients are registered at which servers.
Therefore, whenever a client registers at a server, that server will send a new foreign client message
to all of its peers to inform them about the new client. There is no corresponding deregistration. A client is
considered to belong to a specific server until it registers at another one.

A job is forwarded to a peer by sending that peer the appropriate gosa_trigger_action_ * message.

A special case are wakeup jobs. These are not forwarded in the sense that the responsibility for the
wakeup is passed on to the peer. Instead, peers may be asked to help waking up a client, because a peer
may have information about the client's network location that the original server responsible for the job
lacks. To recruit the help from a peer in waking up a client the trigger wake message is used.

Note:

While go-susi and gosa-si-server both follow the general principles outlined above for the forwarding of
jobs, the timing and the message details are different for the two.

new_server

Purpose:

Server->Server. A server announces its presence to another server so that the receiving server will
inform the sending server about job updates etc.

The receiving server must react by sending a confirm new_ server message to the sender (via a
new connection). The sender will keep using the old encryption key if it does not receive a
confirm new_ server message with the new key or, if there is no old key, communication will fail
altogether.

Example message (encrypted with [ServerPackages] key):

<xml>

<header>new server</header>
<new_server></new_server>
<source>172.16.2.143:20081</source>
<target>172.16.2.184:20081</target>
<key>eT1WFLUYpRhCKBpagk5B4Zk3NkDcLco</key>

<loaded modules>gosaTriggered</loaded modules>
<loaded modules>siTriggered</loaded modules>
<loaded modules>clMessages</loaded modules>

<loaded modules>server server com</loaded modules>
<loaded_modules>databases</loaded_modules>

<loaded modules>logHandling</loaded modules>
<loaded modules>goSusi</loaded modules>
<client>172.16.2.143:20083,00:50:56:37:63:21</client>
<client>172.16.2.22:20083,00:1b:61:72:79:f5</client>
<macaddress>00:50:56:37:63:21</macaddress>

</xml>
The message elements have the following meaning:
<new_server> Always empty.

<key>

A randomly generated string of letters and digits to be used for server-server communication
between sender and receiver. Replaces the most recent key exchanged between the 2 servers via
new_server/confirm new_server. The sender won't actually use the new key until it receives a
confirm new server,

<loaded_modules> (0 or more times) Modules supported by the sending server.
A server that advertises "goSusi" in this list (as go-susi does) promises the following:

o

O

All foreign job updates it sends will be synchronous (see <sync> description there)
It will send out a foreign job updates message whenever a job it is responsible for
changes, even if that change is caused by a foreign Jjob updates. Note the restriction
of this rule to jobs the "goSusi" server is responsible for (i.e. those that have it as
<siserver>). Without this restriction there would be infinite series of update messages.
When it establishes a connection with the receiving peer for the first time or re-establishes it
after an interruption, it will send a foreign job updates with <sync>all</sync>.

All jobs have a unique <id> which is contained in gosa_query jobdb replies as well as
foreign_job_updates messages and can be used to address jobs with specificity in
<where> clauses.

When a "goSusi" server sends out a foreign job updates message that affects a job
whose <siserver> is another server, it will use that server's original <id> for the job. IOW,
the <id> of a job is always from the jobdb of the job's <siserver>.

An <id> value is never re-used for a different job once it has been used.

When a <periodic> job has finished, the next repetition of the job gets a new <id>.

When a <periodic> job has finished and the next repetition gets scheduled, both facts are
communicated by foreign job updates (either in two separate messages or one
combined message).

o Two jobs with different <id> are never treated as the same. In particular
foreign_job_updates messages do not use the combination
<headertag>+<macaddress> to identify jobs. This applies only to communication with other
servers advertising "goSusi". When communicating with non-"goSusi" servers this behaviour
is not required.

o A corollary of the previous point is that a server that advertises "goSusi" is capable of
managing multiple jobs with identical properties.

<client>
Listening port and MAC address of a client registered at this server.
<macaddress> The sending server's MAC address.

gosa-si-server notes:
gosa-si-server sends this message in gosa-si-server:register at foreign servers().
gosa-si-server re-registers at all known other servers (not just from DNS but also those known from
incoming messages) in regular intervals. go-susi doesn’t do that at this time.

go-susi notes:
When go-susi starts, it will send this message to all servers listed in DNS for the service tcp/gosa-si.
When go-susi receives a new_server message it will send a confirm new server message to
the server listed in <source> (usually the sender itself) and following confirm new server it will
send its complete jobdb as a foreign job updates message. The latter behaviour is different
from gosa-si which only sends confirm new_server.
When go-susi is contacting a peer server for the first time after being started, go-susi will consider
the key it sends in the new_server message valid and will use it even before the peer replies with
confirm new server, |OW the confirm new server message is not required in the case of
go-susi.

confirm_new_server

Purpose:

Server Server. Same format as new_server, except that the <header> and the empty tag are
"confirm new server".When server A sends server B a new_server message containing server A's
information, server B sends back (via a new connection) a confirm new server message containing
server B's information. After this exchange both servers have each other's data. The
confirm new_ server message usually contains the same <key> as the new_server message. In any
case the most recent new _server/confirm new server message received (not sent!) determines the
key used for those messages that are encrypted with a server-key (such as foreign_job_ updates).

foreign_job_updates
Purpose:
Server->Server. Inform another server about changes made to one or more jobs. This message is
also used to cancel other servers’ jobs by telling them the status is “done” (and periodic is "none").
The server that receives this message replaces the data of the job(s) with the new data.
Example message:
<xml>
<header>foreign job updates</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.60:20081</target>
<sync>ordered</sync>
<answerl>
<plainname>grisham</plainname>
<progress>none</progress>
<status>done</status>
<periodic>none</periodic>
<siserver>localhost</siserver>
<modified>1</modified>
<targettag>00:0c:29:50:a3:52</targettag>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20120906164734</timestamp>
<id>4</id>
<headertag>trigger action wake</headertag>
<result>none</result>
<xmlmessage>PHhtbD48aGVhZGVyPmpvY190cmlnZ2VyX2Fjd
Glvbl93YWt1PC90ZWEFkZXI+PHNVvAXJJZTSHTINBPCOzb3VyY2
U+PHRhcmd1dD4wMDowYzoyOTolMDphMzolMjwvdGEyZ2V0Pjx
0aWl1lc3RhbXA+MjAxMjASMDYxNJQ3MzQ8L3RpbWVzdGFtcD48
PWEjYWRkcmVzcz4dwMDowYzoyOTolMDphMzolMjwvbWEjYWRkc
mvVzcz48L3htbD4=</xmlmessage>
</answerl>
</xml>

The message elements have the following meaning:
<sync> (optional, unless the sender has “goSusi” in <loaded_modules>)
"none" or not present
The order in which foreign job updates messages are received and the order in which
jobs are listed within a message may not reflect the order in which the changes were
performed.
"ordered"
The sender ensures that foreign job updates messages are received and jobs within
them are listed in the same order in which the changes were performed. This
synchronization is implemented by sending all foreign job updates messages properly
ordered over a dedicated permanent connection.
"all"
The foreign_job_updates message contains a complete list of all jobs the sender is
responsible for (i.e. where <siserver> is the sender). The receiver is expected to discard all
old information about the sender’s jobs it has and replace it with the new data.
<answerxX>
Each job in the list has its own number X, counting from 1 with no numbers left out. Note that X is

not identical to the <id> number.

<id>
If the sending server does not advertise "goSusi" in its (confirm)new server message, this
number is the ID of the job in the sending server’s jobdb.
If the sending server does advertise "goSusi" inits (confirm)new server message, this
number is the ID of the job in the responsible server’s jobdb (i.e. the jobdb of the job's <siserver>).

<siserver>
The listen address (IP:port) of the server responsible for processing the job. When gosa-si-server
sends this message, this can also be the word “localhost” (and go-susi treats this as alias for the
address from <source>).

<periodic>
If the foreign job updates was sent as aresult of gosa _delete jobdb entry, then
<periodic> is always "none" or not present, even if the job started out as periodic.

<modified> always 1.

<macaddress>+<headertag>
gosa-si-server uses this pair as the key to uniquely identify a job. This means that the job database
of a gosa-si-server can only contain one job type per MAC address. If the jobdb already contains an
entry for the <macaddress>+<headertag> pair from the foreign job updates message, that
entry will be updated. Otherwise a new entry will be added to the jobdb.
gosa-si-server treats <macaddress> as case-sensitive and will not process
foreign_job_ updates correctly if the case in the message does not match the case in its
database.
go-susi uses <id> to uniquely identify a job and permits multiple jobs with the same
<macaddress>+<headertag> to coexist. When go-susi evaluates foreign_ job_updates from a
gosa-si-server, however, it will fall back to gosa-si-server's behaviour.

<xmimessage>
Base64-encoded <xml>...</xml|> message that was used to create the job originally.

gosa-si-server notes:
This message is handled in events/server server com.pm:foreign job updates() .
<xmlmessage> may include whitespace characters in the base64-string that need to be removed
before the string will decode properly.
gosa-si treats <macaddress> as case-sensitive and will not process foreign_Jjob_updates
correctly if the case in the message does not match the case in its database.
go-susi notes:
<sync> is a go-susi extension.
gosa-si-server sends <xmlmessage> to itself (replacing "job_" with "gosa_" in the <header>) when the
job's time has come. This means that in case of an inconsistency between <xmimessage> and the job's
data, <xmlmessage> wins. go-susi does not use <xmlmessage>, so in case of an inconsistency go-susi
will go by the job's data.

new_foreign_client

Purpose:
Server->Server. When a client registers at a server using here i am, that server notifies its peers
of the new client by sending a new_foreign client message.

Example message:

<xml>
<header>new foreign client</header>
<source>172.16.2.19:20081</source>
<target>172.16.2.60:20081</target>
<client>172.16.2.143:20083</client>
<macaddress>00:45:6e:00:03:01</macaddress>
<key>current client key</key>
<key>previous client key</key>
<new_foreign client></new foreign client>

</xml>

The message elements have the following meaning:
The <macaddress> and <client> elements identify the client. The <key> elements, if present,
specify the most recent and the previous encryption key sent by the client via here i _amor
new_key. The <key> elements are go-susi specific and not sent by gosa-si-server.

Note that even with the client's key a foreign server can not contact that client successfully, because gosa-

si-client discards messages whose origin is not the si-server it is registered at.

trigger_wake

Purpose:
Server->Server. Ask a peer server for help in waking up a machine.

Example message:
<xml>

<header>trigger wake</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.60:20081</target>
<macaddress>00:45:6e:00:03:01</macaddress>
<trigger wake></trigger wake>

</xml>

The message elements have the following meaning:
The <macaddress> identifies the machine to be woken up. The other elements have their usual meanings.
The empty <trigger_wake> element is always empty.

Client - Server

When an si-client starts up, it checks its configuration as well as DNS and assembles a list of available si-
servers. It will then send a here 1 am message to the first server on the list. If it receives a registered
message from the server within a certain amount of time (typically 10s), the client and that server are
paired and have a shared encryption key that they will use for all future communications.

If no registered message is received from the server within the time window, the client will send a
here i am to the next server on the list and will keep on going through the server list until a server
manages to answer within the time window. This behaviour can lead to the absurd situation that all servers
on the list are available and do answer but registration fails anyway because delays cause all of the
answers to miss the time window.

From time to time the client will send a new_key message to the server to establish a new encryption key
to be used for future messages between the two parties. While this does not make the stupid homegrown
encryption protocol used by gosa-si secure, it does cause race conditions because the client simply starts
using the new key right away, even though the server may not have processed the new_key, yet.

What happens after the server has sent the registered message to the client depends on whether an
LDAP object exists for the client's system or not. If there is an LDAP object, the server will read its data and
data from gosaGroupOfNames it is a member of and will send corresponding new_1ldap config,

new ntp configandnew syslog config messages to the client.

If there is no LDAP object for the client, the server sends a detect hardware message and creates an
installation job with <progress>hardware-detection</progress> for the new system. The client
then performs hardware detection and sends the results back to the server in a detected hardware
message. The server uses that information to create an LDAP object. If a matching template object exists
(go-susi extension, see detected hardware for details), the result is a complete system object.
Otherwise it is an incomplete object in new-systems-base that needs to be completed in GOsa.

Once the object has been completed, the server sends the available information to the client in

new ldap config, new ntp configandnew syslog config messages. And when the
gotoMode becomes active, the server sends set_activated for installation. ltis only after
the client has received both new ldap configand set activated for installation thatitcan
begin the actual installation process. A variety of message types may occur during an installation or
softupdate. These are explained in their own chapter of this manual.

Whenever a server starts executing a job that affects a client, it will send that clienta trigger action_ *
message. Depending on the kind of job the client may react to this by e.g. presenting a popup to a logged
in user asking the user to log out.

Jobs of type job_send user msg have their own associated client-server messages but go-susi does not
support these. See the chapter on deprecated messages later in this manual.

here_i_am
Purpose:

Client=>Server. Used by an si-client to register at the si-server responsible for it. The si-server reacts
by sending a registered message possibly followed by

anew_ldap_config message to tell the client which LDAP parameters it should use.
a detect hardware message to instruct the client to perform hardware detection.
anew_ntp config message to tell the client which NTP server(s) to use.
anew_syslog config message to tell the client which syslog server to use.

o O O O

A client to be (re)installed will not start the installation until it has received the return message(s) to
its here 1 am message from the server from which it is installing. In other situations (e.g. normal
booting) the client will, if it does not receive the messages after a few seconds, try to register at
each si-server listed in DNS in turn to find one that answers quickly enough.
The here i am message is also responsible for setting the encryption key the si-server should use
to encrypt messages sent to the client (such as new_1ldap_ config) .
When a client has successfully registered at a server, the server sends out new foreign client
messages to its peers.
The new client will also appear in future (confirm)new server messages sent by the server.
If the server can find the client in LDAP by its MAC address, it will also update the ipHostNumber
field. go-susi also updates the cn.
If the sending client does not exist in LDAP, a reinstall job will automatically be created with
<progress>hardware-detection</progress> and <status>processing</status> and the
detect_hardware message will be sent to the client.
Example message:
<xml>
<header>here i am</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.143:20081</target>
<here_i_ am></here i am>
<mac_address>00:0c:29:50:a3:52</mac_address>
<new_passwd>qXBaZCanKthDULADOlthfk9kHdnl</new_passwd>
<key lifetime>600</key_ lifetime>
<client revision>20926</client_revision>
<client_ status>stable</client_status>
<gotoHardwareChecksum>gQvNNtPgqaV5MG8UE1NS7g</gotoHardwareChecksum>
<events>
trigger action localboot, trigger action reboot,
confirm new key,mailqueue requeue, import events,usr msg,
new syslog config,generate hw digest,get events,
new ntp config,mailqueue del, trigger action faireboot,
new key,registered,mailqueue header, trigger action reinstall,
new ldap config,trigger action instant update,mailqueue hold,
set activated for installation,detect hardware,
trigger action update,ping,mailqueue unhold,
mailqueue query, trigger goto settings reload,
trigger action halt
</events>
</xml>

The message elements have the following meaning:

<mac_address>
The sending client's MAC address. Note: The tag has an underscore in its name unlike the MAC
address elements in other messages.

<new_passwd>
The client equivalent to the <key> element of new server messages. The receiving server will use
this key to encrypt messages to the client.

<key_lifetime>
Number of seconds the key is valid. The client will send a new_key message in intervals of this
many seconds (Some versions of gosa-si-client don’t do this because of bugs. They keep using the
same key indefinitely).

<client_revision>, <client_status> Version information about the client.

<gotoHardwareChecksum> A digest generated based on the machine hardware.

<events> The set of messages the client understands.

go-susi notes:
go-susi updates the system’s ipHostNumber field when it receives this message. If the system’s
cn does not match the long or short name of the reverse lookup of its IP, the object will be renamed
to match the DNS name.

gosa-si-client notes:

gosa-si-client internally manages a list ¢servers that it will contact in turn with here i am until it receives
a registered response within a certain reply time. If gosa-si-client receives a message that it cannot
decode, it will re-register, however, it will do so at the next server in the list instead of starting at the
beginning again.

new_key

Purpose:
Client=>Server. Informs the server about a new encryption key to be used when communicating with

the sending client.

Example message:
<xml>
<header>new key</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.143:20081</target>
<new_key>edLDBiajQownOirf424zKFOyG4AlrP7</new_key>
</xml>

registered

Purpose:
Server=>Client. Sent in reaction to a client’'s here i am message.

Example message:

<xml>
<header>registered</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.106:20083</target>
<ldap_available>true</ldap available>
<registered></registered>

<xml>

The message elements have the following meaning:

<ldap_available>

If this is present and true it tells the client that it will get a new_1dap config message. If the element is
absent or false, this means that no LDAP information is available and the client will not receive a

new ldap_ config message until its LDAP object has been created (usually after hardware detection). If
this element is sent as true and not followed up with a new_1ldap config, the installation will not
properly display the message “System is locked. Waiting for activation.”

new_ldap_config

Purpose:

Server=>Client. Sends various LDAP-related information to the client. This message is not sent until
the client object has been properly created.
Note:
When go-susi receives this message, it will call [general] /new-config-hook. If go-susiis in
client-only mode, it will also update its internal LDAP parameters.
Example message:
<xml>
<header>new ldap config</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.106:20083</target>
<admin_base>ou=Direktorium,o=go—susi,c=de</admin_base>
<department>Direktorium</department>
<ldap_base>ou=Direktorium,o=go-susi,c=de</ldap_base>
<ldap_uri>ldap://ldap0l.example.de</ldap_uri>
<ldap _uri>ldap://ldap02.example.de</ldap_uri>
<release>halut/2.4.0</release>
<unit_tag>1154342234048479900</unit_tag>
<new_ldap config></new_ldap config>
</xml>

The message elements have the following meaning:

<release> (optional)
The release the client should have according to LDAP if known.

<ldap_uri> (1 or more)
The LDAP server(s) from which the client should read its data. All listed LDAP servers contain the
same data with respect to the client system’s object but may differ in other ways. In general the
client should use the first <ldap_uri> and only fall back to trying the others if the first is not
available.

<ldap_ base>
The base under which the client should look for its data. There is only one <ldap_base> element
even if there are multiple <1ldap_uri> elements.

<unit_tag> (only present when unit tags are used) The unit tag for the client.

<admin_base>(only present when unit tags are used)
The dn of the admin base object. This is the first object under the <ldap_base> that matches
(& (objectClass=gosaAdministrativeUnit) (gosaUnitTag=...)) . Typically this is the
same as the <ldap_base>.

<department>(only present when unit tags are used) The ou attribute of the admin base object.

gosa-si-server notes:
modules/ClientPackages.pm:new ldap config() contains the code that constructs this
message. When the system is activated for installation, the set_activated for_ installation
message will always be followed by new 1ldap config. This seems like a race condition. | think it
would be better to send the new ldap config beforehand. In practice this is not a problem with
gosa-si-server because it seems to send the LDAP config once before and once after the
set_activated for_ installation however | believe that the data sent before reflects only a
default choice and may not be current if the LDAP server is changed in GOsa for a new system.
GOsal/go-susi note:
The format of the gotoLdapServer attribute that is the source for this message's information has

changed over time. go-susi only supports the version 3 format.
Version 3 format; Index:Servername:URL/Base
Version 2 format: Index:Servername:Base
Version 1 format: Servername : URL/Base

where
Index is a number used to sort multiple gotoLdapServer values.
Servername is unused in version 3 format.
URL is the Idap:// or Idaps:// URL of the server.

Base is the DN of the subtree to which searches should be restricted.

new_ntp_config

Purpose:
Server=>Client. Tells the client which NTP server(s) to use.

Note:
When go-susi receives this message, it will call [general] /new-config-hook,

Example message:

<xml>
<header>new ntp config</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.106:20083</target>
<server>pool.ntp.org</server>
<server>ntp.example.org</server>
<new_ntp config></new_ntp config>

</xml>

The message elements have the following meaning:
<server> (1 or more) NTP server(s) to use.

detect_hardware

Purpose:

Server->Client. When the server receives a here i am message with a MAC address for which no
GOhard object can be found in LDAP, the server sends a detecT_hardware message. The client
reacts to this message by performing hardware detection and sends a detecTED hardware
message to the server. The server then creates the LDAP object with that data.

Example message:
<xml>
<header>detect hardware</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.146:20083</target>
<detect hardware></detect_ hardware>
</xml>

detected_hardware

Purpose:

Client>Server. When the server receives a here i am message with a MAC address for which no
GOhard object exists in LDAP , the server sends a detecT hardware message to the client. The
client reacts to this message by performing hardware detection and sends a detecTED hardware
message to the server. The server then creates the LDAP object with that data. If a
detecTED hardware message is received for a system whose MAC address is found in LDAP,
then that system's LDAP object will be updated with the new info.
go-susi extension:
go-susi extends the usage of detected hardware to permit any kind of creation, modification and
even moving of system objects within the LDAP tree, even without prior use of here i _am. See the
go-susi note further below for more information.
Template objects:
The data from the detected_hardware message is not enough to create a complete system
object that is ready for installation. This means that usually further action is necessary in GOsa to
provide the remaining data before the installation can begin. To allow for fully automatic installation,
go-susi has the ability to complement the detected hardware data with data copied from a
template object.
Whenever go-susi receives a detected hardware message for a system that does not yet exist
in LDAP, go-susi will search for template objects which are objects that have
objectClass=GOHard and a goComment attribute that starts with "Template for". The
remainder of the goComment is taken as a matching rule as described below. If the rule matches
against the attributes of the new system that are known so far, then the other attributes are copied
from the template object.
Template objects that are group members:
If the template object is member of any object groups (cbjectClass=gosaGroupOfNames), then
the new system will be added to the same groups.
Auto-activation for immediate installation:
If the template object has gotoMode=active, then the new system will be activated and
installation will commence immediately.
Object creation not in new-systems-base:
The new system's LDAP object will be placed in the same LDAP path as the template object from
which it copies attributes. Template objects are allowed to be but don't need to be in new-
systems-base.
Matching rule language:
A matching rule consists of one or more parts, optionally separated by whitespace. Each part can
have one of the following 2 forms:
attributeName =~ /regex/
matches if the system has at least an attribute named attributeName with at least one
value that matches the given regex. This is a non-anchored match. If you want the match to
be anchored you need to specifically include ~ and/or $ in the regex.
As a special case the regex /”~$/ matches if the system has no attribute attributeName,
attributeName !~ /regex/
matches if none of the system's values for the attribute named attributeName match the
given regex. If the system has no attribute of that name this will be treated as if it had such
an attribute with an empty string as value.
The regex syntax is described here: https://code.google.com/p/re2/wiki/Syntax
Whitespace note: Every sequence of whitespace characters in regexes is converted to "\s+", so a
simple space represents any kind of whitespace. Note that this breaks some things like "[* 1". Use
\x20 if you need to explicitly match a space.

https://code.google.com/p/re2/wiki/Syntax

Matching process:
The matching rule is divided into groups of subsequent parts of the same type (i.e. =~or !~).
From each =~ group the system must match at least one part.
From each !~ group the system must match all parts (i.e. it must not match any of the regexes).
Example:
cn=~/foo/ cn=~/bar/ cn!~/fool/ cn!~/barstool/ cn=~/moo/
matches cn=foomoo
matches cn=moobar
does not match cn=foo (the "moo" from the 2nd =~ group is missing)
does not match cn=moofoolish (forbidden by cn!~/fool/)
does not match cn=barstoolmoo (forbidden by cn!~/barstool/)
does not match cn=moo (needs "foo" or "bar" from the 1st =~ group)
matches cn=foobarmoomoo (multiple matches from each group are okay)
Matching rule precedence:
If multiple template objects have matching rules that match the new system, go-susi will choose that
template object whose rule contains the greatest number of matching (or non-matching in the case
of "I~") regular expressions. If multiple template objects have the same score, one of them will be
picked in an unspecified manner.
Example: In the example from Matching process above, cn=foobarmoomoo has a matching
score of 5, because it matches all three =~ parts and does not match the two ! ~ parts.
Attributes available for matching:
The following attributes may be used in matching rules:

o all attributes from the <detected hardware> element of the detected hardware
message.

o the system's macAddress. If the <detected_hardware> element does not contain a valid
MAC, it will be determined from the most recent here_i_amor new_foreign_client
message concerning the client matching detected hardware's <source> element.

o the system's ipHostNumber extracted from detected hardware's <source> element
(unless there is an attribute or sub-element ipHostNumber in <detected_hardware>).

o cn which is the system's DNS name in plain or fully qualified form as determined by a
reverse lookup of ipHostNumber (see above).

o siserver which evaluates to the go-susi server doing the matching. You can match by IP
address as well as DNS name (siserver is a multi-value attribute)

Example message:
<xml>

<header>detected hardware</header>

<source>172.16.2.146:20083</source>

<target>172.16.2.143:20081</target>

<detected hardware
ghCpuType="GenuineIntel / Intel (R) Celeron(R) CPU E3300 @
2.50GHz - 2493.734"
ghGfxAdapter="VMWare VMWARE(Q0405"
ghMemSize="1025692"
ghNetNic="AMD PCnet - Fast 79C971"
ghSoundAdapter="Ensoniq Creative Sound Blaster AudioPCI64V,
AudioPCI128"
ghUsbSupport="false"
gotoHardwareChecksum="qQvNNtPqaV5MG82UEINS7g"
gotoSndModule="snd ensl1371"
gotoXDriver=""
gotoXHsync="31-48" gotoXMonitor="Generic Monitor"
gotoXMouseType="explorerps/2" gotoXMouseport="/dev/input/mice"

gotoXResolution="800x600" gotoXVsync="50-90"
gotoXkbModel="pcl04" macAddress="00:00:00:00:00:00"

<ghScsiDev>NECVMWar VMware IDE CDR10</ghScsiDev>
<ghScsiDev>VMware Virtual S</ghScsiDev>
<gotoModules>ppdev</gotoModules>
<gotoModules>gameport</gotoModules>
<gotoModules>psmouse</gotoModules>
<gotoModules>joydev</gotoModules>
<gotoModules>parport pc</gotoModules>

<gotoModules>async xor</gotoModules>
<gotoModules>hid</gotoModules>
<gotoModules>pcnet32</gotoModules>
</detected_hardware>
</xml>

gosa-si-client note:
The macAddress attribute of <detected_hardware> may be 00:00:00:00:00:00 when this
message is sent by gosa-si-client. | don't know if this happens all the time with all versions of gosa-
si-client.

go-susi note:
go-susi permits multiple <detected_hardware> elements and will take the union of all their values.
As an alternative to attributes on the <detected_hardware> element go-susi also accepts child
elements inside <detected_hardware>, e.g. <detected_hardware><gotoXHsync>31-
48</gotoXHsync></detected_hardware>.

go-susi writes all attributes and sub-elements of <detected_hardware> into the LDAP object,

except objectClass. If there is an ipHostNumber attribute or element, it will override the IP

address extracted from <source>. If both ipHostNumber and macAddress are present, the
<source> element does not need to identify a known client. This means that with go-susi you can
use a detected hardware message to create a self-contained ready-for-installation object in

LDAP and you can use detected hardware messages to update all aspects of a system object.

It is even possible to rename a system by including a cn attribute and to move a system by

including a dn attribute.

Note that when updating an existing object, all attributes from the old object that are completely

missing from <detected_hardware> will be copied, but if <detected_hardware> has an attribute

with the same name, it will replace the old attribute completely. IOW, old and new attribute values
are never mixed for the same attribute. E.g. if you want to add a single gotoModules entry, you
need to repeat all the old entries in the detected hardware message. You can't just list the new
module and expect the others to be copied.

To delete an attribute, include an empty sub-element of that name in <detected_hardware>.
go-susi accepts detected_hardware messages encrypted with any key, not just client keys. This allows
a 3rd party to create system objects by sending detected hardware encrypted e.g. with the
[GOsaPackages] key.

trigger_action_*
Purpose:

Server=>Client. Sent by the server to the client when the server starts executing a job that affects
the client. The client will then react appropriately. Most of the time this means presenting a message
to logged in users to log out.

Example message:

<xml>
<header>trigger action localboot</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.146:20083</target>
<trigger action localboot></trigger action localboot>
<session_id>109</session_id>

</xml>

The following actions are supported:
trigger action localboot
trigger action halt
trigger action faireboot
trigger action reboot
trigger action reinstall
trigger action update
trigger action instant update

Installation and Softupdate

When an installation is pending and the client's LDAP object has gotoMode locked the client waits for
the si-server where it is registered to send the clienta set _activated for installation message.
During an installation as well as during a softupdate the client sends information about the FAI progress to
the server.

The CLMSG_PROGRESS message contains a number between 1 and 100 that gives a rough indication of the
percentage of the process that has been completed.

The CLMSG_GOTOACTIVATION message is a strange kind of progress message that sets the job's
<progress> (which otherwise is a number) to the string "goto-activation".

The CLMSG_HOOK, CLMSG TASKBEGIN, CLMSG TASKDIE, CLMSG TASKEND and
CLMSG_TASKERROR messages inform the server about specific steps in the FAI process.

The most important message during installation/update is CLMSG _save fai log which the client uses to
transmit the log files from the process to the server. The server stores these log files and allows access to
them via gosa show log by mac, gosa show log files by date and mac and

gosa get log file by date and mac.

The CLMSG_check has an unclear purpose and is ignored by the si-server.

set_activated_for_installation

Purpose:

Server=>Client. Tell the client that it has been activated. This message is always sent when a
trigger action_activate job is executed, regardless of whether the client has a pending
installation or not. It's even sent if the client is already activated.

Example message:

<xml>
<header>set activated for installation</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.146:20083</target>
<faistate>install</faistate>
<set_activated for_ installation></set_activated for_ installation>
<session_id>109</session_id>

</xml>

The message elements have the following meaning:

<faistate>
This reflects the value of the target machine's FAIstate attribute at the time of the activation job
that triggered the sending of the message.

gosa-si-client notes:

When the client receives this message in client/events/installation.pm it creates a file
/var/run/gosa-si/gosa-si-client.activated. fai/get-config-dir—-gosa waits for the
existence of this file before starting the installation.

CLMSG_PROGRESS

Purpose:
Client=>Server. During installation or softupdate the client uses this message to send progress
information in percent to the server.
When the server receives this message it will update its job data and will forward the new
information via foreign job updates to its peers. Subsequent gosa query jobdb requests
will also receive the new progress number in the answer's <progress> element.
Note that CLMSG_GOTOACTIVATION js technically also a progress indication and reflected in the
<progress> element.

Example message:

<xml>
<header>CLMSG_PROGRESS</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_PROGRESS>77</CLMSG_PROGRESS>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

The message elements have the following meaning:

<CLMSG_PROGRESS>
An integer between between 1 and 100 (inclusive) giving the percentage of the
installation/softupdate that has been completed.

<timestamp>, <macaddress> see CLMSG CURRENTLY LOGGED IN.

CLMSG_GOTOACTIVATION

Purpose:
Client=>Server. The client sends this message when it receives GOTOACTIVATION via its FIFO
interface. | don't know who sends this to the FIFO. In any case it happens when the client is waiting
for activation because it is in gotoMode "locked". It does not matter if the client already existed
in LDAP or was just created.
When the server receives this message it will update its job data to have

<progress>goto-activation</progress>

and will forward the new information via foreign job updates to its peers. Subsequent
gosa_query_ Jjobdb requests will also receive the new progress <progress> element.
Other than updating the progress, this message has no effect on the server.

Example message:

<xml>
<header>CLMS G _GOTOACTIVAT ION</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_GOTOACTIVATION>< /CLMS G_GOTOACTIVATION>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

The message elements have the following meaning:
<timestamp>, <macaddress> see CLMSG CURRENTLY LOGGED IN.

CLMSG_save_fai_log

Purpose:
Client=>Server. Transmits log files from a finished installation or softupdate to the server.

Example message:
<xml>

<header>CLMSG save fai log</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<macaddress>00:0c:29:50:a3:52</macaddress>
<fai_action>install</fai_action>
<CLMSG_save_fai log>
log file:fstab:IyAvZXRjL2...c2RhNQo=
log file:format.log:U3Rhc...M2I50DEK

</CLMSG_save_ fai log>
</xml>

The message elements have the following meaning:

<macaddress>
The MAC of the client whose log files are being sent (usually the same machine as identified by
<source>.

<CLMSG_save_fai log>
The log files to be transmitted. Every log file starts with the literal string "1og file:", followed by
the file name, followed by " : ". This is followed by the base64-encoded file contents and terminated
by a space.

<fai action>

The FAI action for which log files are being transmitted. Possible values are "install" and
"softupdate".

There is no <timestamp>. Unlike most other CLMSG_* messages, this one does not include a
<timestamp> element.

gosa-si-client notes:
gosa-si-client inserts spaces into the base64-encoded data which break some base64 decoders.
Remove all whitespace before decoding.

| have observed broken base64 strings coming from gosa-si-client.

CLMSG_<FAI MONITOR EVENT>
Purpose:

Client=>Server. During installation gosa-si client receives events from FAI via its FIFO interface.
These events can be seen in the fai-monitord. log log file. gosa-si-client passes these events
on to the server.

The CLMSG_* messages are used to communicate the status of an installation from the client to
the Server. These messages look almost the same, except the element with the value and the

header. Furthermore, the message CLMSG save fai log has the additional element
<fai action>.

Example message:

<xml>
<header>CLMSG_TASKBEGIN</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_IASKBEGIN>Confdir</CLMSG_IASKBEGIN>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

Possible <FAI MONITOR EVENT>s:
HOOK
TASKBEGIN
TASKDIE
TASKEND
TASKERROR
check

CLMSG_TASKBEGIN / CLMSG_TASKERROR / CLMSG_TASKEND

Purpose:
(See also CLMSG_<FAI MONITOR EVENT>)

Client=>Server. During installation or softupdate the client sends these messages to the server to
inform it about FAI tasks that are being started (CLMSG_TASKBEGIN), errors that occur during task
execution (CLMSG_TASKERROR) and the exit status when a task finishes (CLMSG_TASKEND).

Example messages for a successfully completed task:
Task “confdir” begins:
<xml>
<header>CLMSG_TASKBEGIN</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_TASKBEGIN>confdir</CLMSG_EASKBEGIN>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>
</xml>

Task “confdir” has terminated successfully with exit code 0:

<xml>
<header>CLMSG_TASKEND</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_TASKEND>confdir O</CLMSG_TASKEND>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

Example messages for a failed task:
Task “instsoft” begins:
<xml>
<header>CLMSG_TASKBEGIN</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_TASKBEGIN>instsoft</CLMSG_IASKBEGIN>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>
</xml>

An error code 472 occurs during execution of task “instsoft”:
<xml>
<header>CLMSG_TASKBEGIN</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_IASKBEGIN>error</CLMSG_TASKBEGIN>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>
</xml>
<xml>
<header>CLMSG_TASKERROR</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_TASKERROR>
instsoft 472 warn:install packages: various error messages
</CLMSG_TASKERROR>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>
</xml
<xml>
<header>CLMSG_TASKEND</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_TASKEND>error 472</CLMSG_TASKEND>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>
</xml>

The CLMSG_TASKEND for the “instsoft” task that failed:

<xml>
<header>CLMSG TASKEND</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_IASKEND>instsoft 472</CLMSG_IASKEND>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

The message elements have the following meaning:
<CLMSG_TASKBEGIN>,<CLMSG_TASKEND>

These messages always come in pairs. Every CLMSG_TASKBEGIN has a matching
CLMSG_TASKEND,

<CLMSG_TASKBEGIN>, <CLMSG_TASKERROR>,<CLMSG_TASKEND>
A CLMSG_ TASKERROR js surrounded by CLMSG TASKBEGIN and CLMSG TASKEND for an "error"

task. This means that if an error occurs during a task there will be (at least) 5 messages:
CLMSG TASKBEGIN, CLMSG TASKBEGIN, CLMSG TASKERROR, CLMSG TASKEND,

CLMSG_TASKEND, Other messages, in particular CLMSG_PROGRESS and CLMSG_HOOK may occur
between these messages.

<CLMSG_TASKERROR> The following is (an incomplete) list of possible errors:
instsoft 472 warn:install packages: various error messages
instsoft 421 warn:install packages: packages missing

<timestamp>, <macaddress> see CLMSG CURRENTLY LOGGED IN.

CLMSG_TASKDIE

Purpose:
(See also CLMSG_<FAI MONITOR EVENT>)

Client=>Server. Signals a fatal error that causes FAI to abort. The system to be installed is probably
unusable. Log files are transmitted using CLMSG _save fai log despite CLMSG TASKDIE,

Example message:

<xml>
<header>CLMSG TASKDIE</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_TASKDIE>extrbase 803 fatal:Bootstrap failed</CLMSG_TASKDIE>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

go-susi notes:
When go-susi receives this message, it removes the running job and sets the system's faistate to
"error:...".

CLMSG_check

Purpose:
(See also CLMSG_<FAI MONITOR EVENT>)

Client=>Server.Sent by gosa-si-client when it receives "check <foo>" via its FIFO. This is caused by
"if sendmon check $sendhostname; then"
from FAl's subroutines:task confdir (). Has no effect on the server.

Example message:
<xml>

<header>CLMSG check</header>

<source>172.16.2.146:20083</source>

<target>172.16.2.85:20081</target>

<macaddress>00:0c:29:50:a3:52</macaddress>

<CLMSG_check>fooclient</CLMSG_check>

<timestamp>20130305113331</timestamp>
</xml>

The message elements have the following meaning:
<CLMSG_check> The plain name of the client.
<timestamp>, <macaddress> see CLMSG CURRENTLY LOGGED IN.

Query various information

The si-server manages various databases on behalf of GOsa.

The message gosa_query fai server returns a list of all known Debian software repositories as well
as the available releases and their sections.

The message gosa_query fai release performs a parameterized search over the database of FAI
classes. It allows selection by a variety of criteria.

The message gosa_query packages_ list performs a parameterized search over the database of
Debian packages. It allows selection by a variety of criteria.

The message gosa_get available kernel returns a list of all available kernels for a certain release.
The messages gosa_show log by mac, gosa show log files by date and mac and

gosa _get log file by date and mac are used to access the log files from installations/updates
stored on the server. Note that server-server-communication does not extend to log files, so these
messages only return those log files sent to the particular server via CLMSG_save fai log.

Note:

The transition of GOsa from accessing LDAP directly to using the si-server is very incomplete. In many
places GOsa does its own LDAP reading and writing and maintains its own state. Whenever an operation
in GOsa takes very long, that is usually the reason.

gosa_query_fai_server

Purpose:
GOsa Server. Return a list of all known Debian software repositories as well as the available
releases and their sections.

Example message:
<xml>
<header>gosa query fai server</header>
<source>GOSA</source>
<target>GOSA</target>
</xml>

Example reply:
<xml>

<header>query fai server</header>

<source>172.16.2.143:20081</source>

<target>GOSA</target>

<answerl>
<timestamp>20130304093211</timestamp>
<fai release>halut/2.4.0</fai_release>
<repopath>halut-updates</repopath>
<tag>1154342234048479900</tag>
<server>http://vts-susi.example.de/repo</server>
<sections>main, contrib, non-free, lhm, ff</sections>

</answerl>

<answerN>. . .</answerN>
<session id>1105</session_id>
</xml>

The reply elements have the following meaning:
<server> The repository URL of the directory that contains the directories dists/ and pool/.
<repopath>
The path relative to the dists/ directory of the directory that contains the Release file.
If the same server has multiple repository paths, each one has its own <answerX> element.
<fai_release>
The FAI release to which the repository path belongs. Typically there is one repository path with the
same name as the FAI release and additional repository paths that can optionally be used via
additional sources.list lines (typical examples are "*-backports" and "*-updates") .
<timestamp> The time when go-susi last checked this entry.
<tag> (optional)
The gosaUnitTag of the repository server (if it has one). The reply may contain servers with different unit
tags.

gosa_query_fai_release

Purpose:
GOsa Server. Query the FAI classes database.

Example message:
<xml>
<header>gosa query fai release</header>
<target>GOSA</target>
<source>GOSA</source>
<where>
<clause>
<phrase>
<fai_ release>plophos/4.1.0</fai_release>
</phrase>
</clause>
</where>
</xml>
The message elements have the following meaning:
<where>
The query syntax is the same as for gosa_query jobdb. The available column names are
<timestamp>, <fai_release>, <type>, <class>, <tag> and <state>. Their meanings are described
below in the explanation of the reply elements.
Note: <tag> is a go-susi extension. See the explanation of the corresponding reply element below.
Example reply:
<xml>
<header>query fai release</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<answerl>
<timestamp>20130304093210</timestamp>
<fai_release>plophos/4.1.0</fai_release>
<type>FAIscript</type>
<class>CLASSNAME</class>
<tag>345</tag>
<state></state>
</answerl>
<answer2>
<timestamp>20130304093210</timestamp>
<fai_ release>plophos/4.1.0</fai_release>
<type>FAIltemplate</type>
<class>CLASSNAME</class>
<tag>934757</tag>
<state></state>
</answer2>

<answerN>. . .</answerN>
<session_id>1013</session_id>
</xml>

The reply elements have the following meaning:
<timestamp>

The time (local server time) when go-susi last checked this entry.

<fai_release>
The release the answer belongs to, i.e. the release this class is available in. Only one release is
listed per answer. If the query requested information for multiple releases that offer the same FAI
class, each is listed in its own answer.

<type>
The type of the class. Possible values are FAThook, FAIpackagelList,
FAIpartitionTable, FAIprofile, FAIscript, FAItemplate and FAIvariable,
Only one type is listed per answer element, even if the query returns multiple types with the same
class name.

<class>
The name of the FAI class described in the answer.

<tag> (optional)
The gosaUnitTag of the FAI class (if it has one). The reply may contain classes with different unit
tags.
Note: This is a go-susi extension. gosa-si-server does not include <tag> in its reply and does not
support filtering by tag in the <phrase> element. gosa-si-server always reports all FAI classes
regardless of their gosaUnitTag.

<state> The following values are possible:
empty string: This class has no special properties.
freeze: modifications to this class via GOsa are not permitted.
branch: deprecated. go-susi never reports this state.

go-susi hote:
In addition to FAI classes actually present in LDAP, go-susi reports pseudo-classes for all
Repository attributes found in the output from package-list-hook. Refer to the section
describing that hook for more information.
GOsa note:
GOsa 2.7 presents all types of FAI class with the same name in one integrated entry. If at least one type
has FAlstate freeze, GOsa will present a lock icon with the entry. However the individual parts remain
independent and if e.g. a FAThook of name FOO has state freeze but a FAIscript of name FOO doesn't,
then GOsa permits editing of the FAIscript, even though it prevents editing of the hook.

gosa_query_packages_list

Purpose:
GOsa Server. Query the Debian packages database.

Example message:

<xml>
<header>gosa query packages list</header>
<target>GOSA</target>
<source>GOSA<L/source>
<select>distribution</select>
<select>package</select>
<select>version</select>
<select>section</select>
<select>description</select>
<select>timestamp</select>
<select>template</select>

<where>
<clause>
<phrase>
<distribution>plophos</distribution>
</phrase>
</clause>
<clause>
<connector>0OR</connector>
<phrase>
<operator>like</operator>
<package>srv-customize-default-parent-servers</package>
</phrase>
<phrase>
<operator>like</operator>
<package>srv-reprepro-statt-debmirror</package>
</phrase>
</clause>
</where>
</xml>

The message elements have the following meaning:
<where> (exactly 1)

The query syntax is the same as for gosa query jobdb. The available column names are
<distribution>, <package>, <version>, <section>, <description>, <timestamp> and
<template>. Their meanings are described below in the explanation of the reply elements.

<select> (0 or more)

Each <select> element contains the name of a column that should be returned for each answer

matching the query. If there is no <select> element, all columns are to be returned.
Note:
At this time go-susi ignores <select> and will always return all columns.

Example reply:
<xml>

<header>query packages list</header>

<source>172.16.2.143:20081</source>

<target>GOSA</target>

<answerl>
<timestamp>20130317185123</timestamp>
<distribution>plophos</distribution>
<package>srv-customize-default-parent-servers</package>
<version>l.0</version>
<section>updates/misc</section>
<description>VWVizZXIgzGViY29uZ...dlc2V0enQ=</description>
<template>C1R1bXBsYXR10i...wgdXN1Cgo=</template>

</answerl>

<answer2>
<timestamp>20130317185123</timestamp>
<distribution>plophos</distribution>
<package>srv-reprepro-statt-debmirror</package>
<version>l.6</version>
<section>updates/misc</section>
<description>QWVuZGVyd. . .bmR1dCB3aXJkLg==</description>
<template></template>

</answer2>

<answerN>. . .</answerN>
<session_id>1013</session_id>
</xml>

The reply elements have the following meaning:

<timestamp>The time (local server time) when go-susi last updated the packages database.

<distribution>
The release the answer belongs to, i.e. the release the package is available in. Only one release is
listed per answer. If the query requested information for multiple releases that include the same
package, each is listed in its own answer.

<package> The name of the package described by the <answerX> element.

<version>
The version of the package. A package may exist in multiple versions even within the same
distribution. In that case each version will have its own <answerX> element.

<section>Guess what.

<description>
The base64 encoding of the short description of the package, i.e. the text from the Debian control
file that starts after "Description:" and extends to the end of the line. Neither
"Description:" nor the newline at the end of the line are included in the <description> element.

<template>
If the Debian package has a templates file describing debconf-parameters, the <template>
element contains this file in its entirety encoded in base64.

gosa-si-server note:

As always gosa-si-server inserts spurious whitespace into the base64 encodings.

gosa_get_available_kernel

Purpose:
GOsa Server. Return a list of all available kernels for a certain release.
go-susi generates this list from the output of an external program specified by the configuration
option kernel-list-hook. The defaultis /usr/lib/go-susi/generate kernel list.

Example message:
<xml>
<header>gosa get available kernel</header>
<source>GOSA<L/source>
<target>GOSA</target>
<fai_release>plophos/4.1.0</fai_release>
</xml>

Example reply:
<xml>

<header>get available kernel</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<session_id>899</session_id>
<get_available kernel></get available kernel>
<answerl>vmlinuz-2.6.32-44-generic</answerl>
<answer2>vmlinuz-3.2.0-24-generic</answer2>

<answerN>default</answerN>
</xml>

gosa_show_log_by mac

Purpose:
GOsa Server. Returns all subdirectories of log files within the log file directory of the machine
selected by the <mac> element. The MAC address is case-insensitive.

Example message:

<xml>
<header>gosa show log by mac</header>
<target>GOSA</target>
<source>GOSA</source>
<mac>00:16:36:7c:db:3f</mac>

</xml>

Example reply:
<xml>
<header>show log by mac</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<mac_00_16 36 _7c_db 3f>install 20130304 112529</mac_00_16 36 7c_db 3f>
<mac_00_16 36_7c_db 3f>softupdate 20130207 155242</mac_00_16_36_7c_db 3f>

<show_log_ by mac></show_log by mac>
<session_id>260</session_id>
</xml>

The reply elements have the following meaning:
<mac_...>
This element corresponds to the <mac> element in the request, but is always lowercase, even if the
MAC address in <mac> was not.
For each subdirectory in the system’s log directory there is one element.
If no log files are available, the answer will not contain any <mac...> elements.

gosa_show_log_files_by date_and_mac

Purpose:
GOsa Server. Get the list of log files contained in a specific subdirectory of a machine’s log file
directory.

Example message:

<xml>
<header>gosa show log files by date and mac</header>
<target>GOSA</target>
<source>GOSA<L/source>
<date>softupdate 20130207 151808</date>
<mac>00:0c:29:50:a3:52</mac>

</xml>

The message elements have the following meaning:
<mac> The MAC address (case-insensitive) of the machine for which to list log files.
<date> The subdirectory name within the machine’s log file directory.

Example reply:

<xml>
<header>show log files by date and mac</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<show_log files by date and mac>

ldap2fai.log

</show_log_files by date_and mac>

<show_log files by date and mac>
shell.log
</show_log files by date and mac>
<session_id>1405</session_id>
<show_log files by date_and mac></show_log files by date_and mac>
</xml>

The reply elements have the following meaning:
<show_log_files_by_ date_and_mac>
Each of these elements contains the name of one of the log files present in the requested
subdirectory.
Note:
One of the returned <show_log_files_by_date_and_mac> is always empty.

gosa_get_log_file_by date_and_mac

Purpose:
GOsa Server. Get the contents of a specific log file.

Example message:
<xml>

<header>gosa get log file by date and mac</header>
<target>GOSA</target>
<source>GOSA<L/source>
<date>install 20130204 152626</date>
<mac>00:0c:29:50:a3:52</mac>
<log file>foo.log</log file>

</xml>

The message elements have the following meaning:

<mac> The MAC address (case-insensitive) of the machine for which to read a log file.

<date> The subdirectory name within the machine’s log file directory where the log file is found.
<log_file> The name of the log file to return.

Example reply:

<xml>
<header>get log file by date and mac</header>
<source>172.16.2.143:20081</source>
<target>GOSA</target>
<foo.log>VXBkY....i4uCg==</foo.log>
<get_log_file by date _and mac></get log file by date_and mac>
<session_id>843</session_id>

</xml>

The reply elements have the following meaning:

<foo.log>
The name of the element corresponds to the contents of the <log_file> element in the request. The
contents are the base64-encoded file contents.

GOsa note:
When the tab “installation logs” for a specific machine is accessed for the first time, no log file is
selected and GOsa creates an incorrect request where <log_file> has the value “0”. gosa-si-server
answers this invalid request with a likewise broken reply.

Miscellaneous

The messages in this section do not fit nicely in any of the other categories.

gosa_ping

Purpose:
GOsa Server. GOsa uses this message to determine if a specific client is on or off. GOsa uses this
information e.g. to present the action "Wake up" only for clients that are off.

Example message:
<xml>

<header>gosa ping</header>

<source>GOSA</source>

<target>lc:6f:65:08:b5:4d</target>
</xml>

Example reply if client is ON:
<xml>
<header>got new ping</header>
<got_new_ping></got new ping>
<source>12.34.56.78:20083</source>
<target>1.2.3.4:20081</target>
</xml>

Reply if client is OFF:
If the client is off, the si-server closes the connection without reply.

GOsa notes:
GOsa only checks if there is a reply but ignores the contents. This means even an error reply will be
interpreted as the client being on.

go-susi hote:
go-susi does not actually ping the client and wait for a pong. go-susi only checks if it can connect to
the si-client port. This eliminates the need for server-server communication in case the client is
registered at a peer and improves GOsa performance compared to the use of gosa-si-server.

panic

Purpose:
Admin=>Server. Causes go-susi to abort with a full stack trace of all running goroutines. This
function is go-susi specific and useful only for debugging.

Example message:
<xml>
<header>panic</header>
</xml>

sistats

Purpose:
Admin=>Server. Query various statistics about go-susi's operation. This function is go-susi specific.

Example message:
<xml>
<header>sistats</header>
</xml>

Example reply:
<xml>

<header>answer</header>

<source>10.10.10.8:20081</source>

<target>GOSA</target>

<answerl>
<Alloc>788080</Alloc>
<Architecture>386</Architecture>
<BuckHashSys>0</BuckHashSys>
<Compiler>gc</Compiler>
<DebugGC>false</DebugGC>
<EnableGC>true</EnableGC>
<Frees>337</Frees>
<Go-Version>gol.0.2</Go-Version>
<HeapAlloc>788080</HeapAlloc>
<HeaplIdle>36864</HeapIdle>
<HeapInuse>1011712</HeapInuse>
<HeapObjects>2440</HeapObjects>
<HeapReleased>0</HeapReleased>
<HeapSys>1048576</HeapSys>
<LastGC>1352903012604979000</LastGC>
<Lookups>167</Lookups>
<MCacheInuse>10656</MCacheInuse>
<MCacheSys>131072</MCacheSys>
<MSpanInuse>5044</MSpanInuse>
<MSpanSys>131072</MSpanSys>
<Mallocs>2777</Mallocs>
<NextGC>967232</NextGC>
<NumCPU>2</NumCPU>
<NumGC>2</NumGC>
<NumGoroutine>12</NumGoroutine>
<0S>1inux</0S>
<PauseTotalNs>1071000</PauseTotalNs>
<Revision>48f6d79cc053</Revision>
<StackInuse>49152</StackInuse>
<StackSys>655360</StackSys>
<Sys>3145728</Sys>
<TotalAlloc>833976</TotalAlloc>
<Version>1.0.0</Version>
<ma11info_arena>1048576</mallinfo_arena>
<mallinfo_fordblks>l033272</mallinfo_fordblks>
<mallinfo_hblkhd>0</mallinfo_hblkhd>
<ma11info_hblks>0</mallinfo_hblks>

<mallinfo keepcost>1029872</mallinfo_keepcost>
<mallinfo ordblks>1 6</mallinfo_ordblks>
<mallinfo uordblks>1530 4</mallinfo_uordblks>
</answerl>
</xml>

The reply elements have the following meaning:
The reply elements are subject to change. They are purely for testing and debugging. Most of them
are either self-explanatory or correspond directly to values from the Go runtime
(http://golang.org/pkg/runtime/).
<Version>
The go-susi version.
<SusiPeersUp>/<SusiPeersDown>
Number of working (Up) and non-working (Down) peers known to support the go-susi protocol.
<NonSusiPeersUp>/<NonSusiPeersDown>
Number of working (Up) and non-working (Down) peers that do not use the go-susi protocol.
<KnownClients>
Number of clients the server is aware of, including those registered at peers.
<MyClientsUp>
Number of clients registered at this server and currently reachable.
<MyClientsDown>
Number of clients registered at this server and currently unreachable (probably off).
<TotalRegistrations>
Total number of here i am messages received.
<MissedRegistrations>
Number of here i am messages to which go-susi did not manage to reply in less than 8s.
<AvgRequestTime>
Time in nanoseconds go-susi took to process requests averaged over the last 100. The time for
reading the request from the network and writing the reply is not included.
<mallinfo_arena>
The number of non-mmap'ed bytes currently reserved by malloc-based memory management. This
includes memory that has already been free()d but not returned to the OS, yet.
Note: malloc-based memory is not managed by the Go runtime and will not be garbage collected.
<mallinfo_fordblks>
The number of bytes within <mallinfo_arena> that have been free()d. These bytes have not been
returned to the OS (i.e. they're reported as in-use in the output of top and ps) even though they are
not actually used by the program. The memory management keeps these bytes reserved either
because of memory fragmentation or to improve performance.
Note: If <mallinfo_arena> and <mallinfo_fordblks> keep growing together over the lifetime of the
program this means that the program has problems with memory fragmentation. It's unlikely you'l
ever see this.
If the difference <mallinfo_arena> - <mallinfo_fordblks> keeps growing over the lifetime of the
program this means that the program has a memory leak. Report this as a bug.
<mallinfo_hblkhd>
Number of bytes allocated by malloc-based memory management using mmap(). This kind of
memory, unlike <mallinfo_arena> is always returned to the OS immediately when free()d, so all of
these bytes are actually in use by the program.
Note: If this number keeps growing over the lifetime of the program this means that the program
has a memory leak. Report this as a bug.
<mallinfo_keepcost>
Number of bytes in <mallinfo_arena> that could be returned to the OS but are kept to make future
allocations faster.
Note: This number should always be close to <mallinfo_fordblks>. If there's a large difference

http://golang.org/pkg/runtime/

between the two it means there's an issue with memory fragmentation.
<mallinfo_hblks>
The number of mmap'ed blocks that hold the memory reported as <mallinfo_hblkhd>.
Note: This number should be fairly constant and small over the lifetime of the program. If it keeps
growing this means the program has a memory leak. Report this as a bug.

gosa_trigger_reload_ldap_config

Purpose:
GOsa=>Server. Causes the server to send a new ldap config message with up-to-date data.

GOsa sends this after operations on the client's LDAP object that have potentially changed the
relevant attributes.

Example message:
<xml>
<header>gosa trigger reload ldap config</header>
<source>GOSA<L/source>
<target>00:16:36:7c:db:3f</target>
<macaddress>00:16:36:7c:db:3f</macaddress>
</xml>

gosa_recreate_fai_release_db

Purpose:
GOsa=>Server. GOsa sends this message whenever a FAI class has been added, modified or
removed.

Example message:

<xml>
<header>gosa recreate fai release db</header>
<source>GOSA</source>
<target>GOSA</target>
<macaddress>GOSA</macaddress>
<periodic>none</periodic>

</xml>

go-susi note:
Because gosa-si-server does not forward this message to peer servers, it is not a good idea to rely
on it. Therefore go-susi does not use this message and instead uses a cache with a very short
lifetime.
If this message is ever implemented in go-susi, go-susi will probably forward it to peers (depending
on whether <source> is GOSA or a peer, to avoid forwarding an already forwarded message).

Deprecated

The messages in this section are concerned with user presence tracking and delivering messages to
individual users. Like the homegrown encryption protocol this message delivery service is badly designed
and go-susi does not support it. The [general]/send-user-msg hook can be used to interface go-susi
with an external messaging service such as Jabber or email.

CLMSG_CURRENTLY_LOGGED_IN

Purpose:
Client=>Server. After the client has registered at the server it will send this message to tell the server
the login names of all users currently logged in (including ssh logins). This corresponds to the users

listed by the who command.

Updates to the list of logged in users are transmitted via CLMSG_LOGOUT and CLMSG_LOGIN
messages.

When the server receives this message, it sends an information sharing message with
<user_db> elements to all peers.

Example message:
<xml>

<header>CLMSG CURRENTLY LOGGED IN</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_CURRENTLY_ LOGGED_IN>
felix.wolga serkan.soeldirim serkan.soeldirim

</CLMSG_CURRENTLY LOGGED_ IN>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

The message elements have the following meaning:

<CLMSG_CURRENTLY LOGGED_ IN>
a space-separated list of login names, including users with graphical as well as ssh sessions. The
list may contain duplicate entries if a user has multiple simultaneous sessions.

<timestamp>
The UTC time at which the message is being sent.

<macaddress> MAC address of the sending client.

go-susi hote:
go-susi currently does not send information sharing messages.

CLMSG_LOGIN

Purpose:
Client=>Server. When a user opens a new session the client sends this message to the server.
When the server receives this message, it sends an information_ sharing message with
<new_user> elements to all peers.

Example message:

<xml>
<header>CLMSG LOGIN</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_LOGIN>felix.wol ga</CLMSG_LOGIN>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

The message elements have the following meaning:
<CLMSG_LOGIN>

Login name of the user who has just opened a new session.
<timestamp>, <macaddress>see CLMSG CURRENTLY LOGGED IN.

gosa-si-client note:
gosa-si-client does not seem to notice new ssh sessions, even though existing ssh sessions are
included in the list from CLMSG CURRENTLY LOGGED IN.

go-susi note:
go-susi currently does not send information sharing messages.

CLMSG_LOGOUT

Purpose:
Client=>Server. When a user terminates a login session the client sends this message to the server.
When the server receives this message, it does not send an information_ sharing message to
its peers.

Example message:

<xml>
<header>CLMSG LOGOUT</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.85:20081</target>
<CLMSG_LOGOUT>feliX.wolga</CLMSG_LOGOUT>
<macaddress>00:0c:29:50:a3:52</macaddress>
<timestamp>20130305113331</timestamp>

</xml>

The message elements have the following meaning:

<CLMSG_LOGOUT>
Login name of the user who has just closed a session. Note that the same user may still have other
sessions open.

<timestamp>, <macaddress> see CLMSG CURRENTLY LOGGED IN.

gosa-si-client note:
gosa-si-client does not seem to notice when ssh sessions are terminated, even though existing ssh
sessions are included in the list from CLMSG_CURRENTLY_ LOGGED_ IN.

information_sharing

Purpose:
Server->Server. Informs the receiving server about users currently logged in at clients registered at

the sending server. Whenever a client sends a CLMSG _LOGIN message to its server, that server
sends information_sharing messages to its peers with <new_user> information.

Whenever a client sends a CLMSG_CURRENTLY LOGGED IN message to its server, that server
sends information sharing messages to its peers with <user_db> information.

When the client sends CLMSG_LOGOUT to its server, gosa-si-server does not seem to forward that
information to its peers.

Example messages:

<xml>
<header>information sharing</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.60:20081</target>
<user db>172.16.2.88:20083;sharak.khun</user_db>
<user_db>l72.16.2.66:20083;thomas.fischmaul</user_db>
<user db>172.16.2.148:20083; thomas.fischmaul</user_ db>
<information_sharing></information_ sharing>

</xml>

<xml>
<header>information sharing</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.60:20081</target>
<new_pser>172.16.2.148:20083;karl.klammer</new_user>
<information_sharing></information sharing>

</xml>

The message elements have the following meaning:

<user_db>
When a <user_db> element is present it means that the information sharing message lists all
users currently logged in at clients registered at the <source> server. Each such user is listed in its
own <user_db> element. The receiving server should discard all old user information from the
<source> server and replace it with the new information.

<new_user>
The <new_user> element is like <user_db> with the difference that the information sharing
message does not list all users. This means that the receiving server should add the new user
information to the old information from <source> rather than discard all old information as it would
do in the case of <user_db>.

go-susi notes:
Currently go-susi understands but does not send these messages.

usr_msg

Purpose:
Server=>Client. Tell a client to present a popup message to the user.

Example message:
<xml>

<header>usr msg</header>
<source>172.16.2.143:20081</source>
<target>172.16.2.146:20083</target>
<message>TmFjaHJpY2h(0</message>
<subject>QmvV0cmVmZg==</subject>
<usr>userid</usr>
<usr_msg></usr_msg>

</xml>

go-susi hote:
go-susi renames all <usr> elements to <user>, then calls user-msg-hook. See
job send user msg for more information.

confirm_usr_msg

Purpose:
Client=>Server. Tells the server that a message sent to the client via usr msg has been presented
to the user.

Example message:
<xml>

<header>confirm usr msg</header>
<source>172.16.2.146:20083</source>
<target>172.16.2.143:20081</target>
<message>TmFjaHJpY2h(0</message>
<subject>QmvV0cmvVmZg==</subject>
<usr>userid</usr>

<confirm usr msg></confirm usr msg>

</xml>

go-susi hote:
go-susi does not support this message.

Appendix

sibridge

Remote control for an si-server.

SYNOPSIS

sibridge [args] [targetserver] [:targetport]
DESCRIPTION

Remote control for an si-server at targetserver:targetport.

OPTIONS

--help
print usage and exit.
——version
print version and exit.
-c <file>
read configuration from <file> instead of the default location.
-1
listen for socket connections (from localhost only) on si-server port +10.
-e <string>
execute commands from <string>.
-f <file>
execute commands from <file>. If <file> is not an ordinary file, it will be processed concurrently with
other special files and data from other -e and -f arguments. This permits using FIFOs and other
special files for input.

-i
Read from stdin even if -I, -e or -f is used. Normally these switches suppress interactive mode.

-V
log INFO level log messages (by default only ERRORSs are logged). INFO level messages may aid
the administrator in debugging problems.

-vv

log INFO and DEBUG level log messages. DEBUG level messages are useful only for developers and may
produce so much data that it affects performance. They also contain cleartext passwords.

generate_package_list

Debian repository scanner to serve as package-list-hook.

SYNOPSIS

export PackagelistCacheDir=...

export PackagelListDebconf=...

export PackagelListFAIrepository=...
export Verbose=...
/usr/lib/go-susi/generate package list

DESCRIPTION

generate_package_list scans a list of Debian repositories, extracts package information and prints it to
stdout in LDIF format as required for use as package-list-hook. For details about this format, see the
section about package-list-hook in the documentation on go-susi's configuration options.

WARNING

If requested (see ENVIRONMENT section below) generate_package_list will scan all Debian packages in
the target repositories for debconf-templates. This requires that all packages be transferred at least partially
and will cause significant network traffic. It will also take a lot of time. Because generate_package_list has
an internal timeout of 1h after which it will stop scanning, it may be necessary to call it multiple times to
complete the scan. Packages that were scanned in a previous run will not be rescanned. Their data will be
used from the cache instead.

ENVIRONMENT

The parameters to control generate_package_list are passed via environment variables. Remember that
the names of environment variables are case-sensitive!

PackageListCacheDir
Path of a directory where generate_package_list should store its cache file.
PackageListDebconf
Controls which .deb packages will be (partially) downloaded for extracting debconf-templates. The
following values are possible:
cache: Do not scan any packages for templates. Templates information already in the cache will
be used.
depends: Only packages that have a Depends or Pre-Depends line that includes the word
"debconf" will be scanned.
everything else: Scan all packages whose debconf-templates (or lack thereof) are not yet registered
in the cache. See WARNING section above.
PackagelListFAIrepository
A space-separated list of strings in the same format as the FAlrepository LDAP attribute. All of the
corresponding repositories will be scanned.
Verbose
If setto 1, 2, 3 or 4 generate_package_list will output informative messages to stderr. Higher numbers
produce more output.

initrd_autopack
A godsend for people developing/debugging initrd.img

SYNOPSIS

/usr/lib/go-susi/initrd autopack <tftp dir> <extract dir>

DESCRIPTION

lusr/lib/go-susi/initrd_autopack is a TFTP hook that allows you to maintain your initrd.img as an extracted
directory tree. When the file is requested, initrd_autopack will automatically compress it. The compressed
file will be kept so that recompression happens only when there have been changes in the extracted
directory tree.

OPTIONS

tftp dir
A TFTP request for /initrd.img addresses the path tftp_dir/initrd.img. If this file exists and is up-to-
date with respect to the corresponding extracted directory tree, it will be served directly. If this file
does not exist or the extracted directory tree has been changed since the last recompression, the
extracted directory tree will be compressed and stored at this location and then served.

extract dir
A TFTP request for /initrd.img corresponds to an extracted directory extract_dir/initrd.img. If this
directory does not exist, but the corresponding tftp_dir/initrd.img does, then tftp_dir/initrd.img will
be extracted. This means that to start working on the insides of an initrd.img, you can just throw it
into tftp_dir/ and boot it once. Afterwards you will find an extracted directory corresponding to the
initrd.img that you can make your modifications to.

License

This document is Copyright © 2012,2013 Matthias S. Benkmann and licensed under the CC-BY-SA-3.0
license as found at http://creativecommons.org/licenses/by-sa/3.0/deed.en US.

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

